scispace - formally typeset
Open AccessJournal ArticleDOI

A Meta-Analysis of Global Urban Land Expansion

Reads0
Chats0
TLDR
A meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs.
Abstract
The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km2 from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km2 and 12,568,000 km2, with an estimate of 1,527,000 km2 more likely.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools

TL;DR: S spatially explicit probabilistic forecasts of global urban land-cover change are developed and the direct impacts on biodiversity hotspots and tropical carbon biomass are explored to minimize global biodiversity and vegetation carbon losses.

Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools

TL;DR: In this paper, the authors develop spatially explicit probabilistic forecasts of global urban land-cover change and explore the direct impacts on biodiversity hotspots and tropical carbon biomass, showing that urban land cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage.
Journal ArticleDOI

Future coastal population growth and exposure to sea-level rise and coastal flooding--a global assessment.

TL;DR: This work combines spatially explicit estimates of the baseline population with demographic data in order to derive scenario-driven projections of coastal population development and highlights countries and regions with a high degree of exposure to coastal flooding and help identifying regions where policies and adaptive planning for building resilient coastal communities are not only desirable but essential.
Journal ArticleDOI

The footprint of urban heat island effect in China

TL;DR: Using MODIS data from 2003 to 2012, it is shown that the UHI effect decayed exponentially toward rural areas for majority of the 32 Chinese cities, and an obvious urban/rural temperature “cliff” is found.
Journal ArticleDOI

Pervasive human-driven decline of life on Earth points to the need for transformative change

Sandra Díaz, +37 more
- 13 Dec 2019 - 
TL;DR: The first integrated global-scale intergovernmental assessment of the status, trends, and future of the links between people and nature provides an unprecedented picture of the extent of the authors' mutual dependence, the breadth and depth of the ongoing and impending crisis, and the interconnectedness among sectors and regions.
References
More filters
Journal ArticleDOI

Global Change and the Ecology of Cities

TL;DR: Urban ecology integrates natural and social sciences to study these radically altered local environments and their regional and global effects of an increasingly urbanized world.

Transportation Research Board

Max S. Baucus
TL;DR: Wu et al. as discussed by the authors published more than 1000 papers from TRR journals beginning with volume 2141 and more than 700 papers from the TRR journal volumes 2090 starting with volume 2090.
Journal ArticleDOI

Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island

TL;DR: In this article, the authors reviewed progress in urban climatology over the two decades since the first publication of the International Journal of Climatology (IJC) and highlighted the role of scale, heterogeneity, dynamic source areas for turbulent fluxes and the complexity introduced by the roughness sublayer over the tall, rigid roughness elements of cities.
Journal ArticleDOI

The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones:

TL;DR: In this article, the authors undertake the first global review of the population and urban settlement patterns in the Low Elevation Coastal Zone (LECZ), defined as the contiguous area along the coast that is less than 10 meters above sea level.
Related Papers (5)