scispace - formally typeset
Journal ArticleDOI

A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification

Reads0
Chats0
TLDR
A review of nanofluid critical heat flux research with the aim of identifying the reasons for its enhancement and the limitations of nanophase applications based on various published reports is presented in this article.
Abstract
Recently, there has been increasing interest in boiling nanofluids and their applications. Among the many articles that have been published, the critical heat flux (CHF) of nanofluids has drawn special attention because of its dramatic enhancement. This article includes recent studies on CHF increasing during the past decade by various researchers for both pool boiling and convective flow boiling applications using nanofluids as the working fluid. It presents a review of nanofluid critical heat flux research with the aim of identifying the reasons for its enhancement and the limitations of nanofluid applications based on various published reports. In addition, further research required to make use of the CHF enhancement caused by nanofluids for practical applications is discussed. Finally, the surface modification method with micro/nanostructures to increase the CHF is introduced and recommended as a useful way.

read more

Citations
More filters
Journal ArticleDOI

A review of the applications of nanofluids in solar energy

TL;DR: In this article, the authors investigated the effects of nanofluids on the performance of solar collectors and solar water heaters from the efficiency, economic and environmental considerations viewpoints, and made some suggestions to use the nanoparticles in different solar thermal systems such as photovoltaic/thermal systems, solar ponds, solar thermoelectric cells, and so on.
Journal ArticleDOI

A review on hybrid nanofluids: Recent research, development and applications

TL;DR: In this paper, a review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids, and showed that proper hybridization may make the hybrid nanoparticles very promising for heat transfer enhancement, however, lot of research works are still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.
Journal ArticleDOI

A critical review of traditional and emerging techniques and fluids for electronics cooling

TL;DR: In this paper, a critical review of traditional and emerging cooling methods as well as coolants for electronics is provided, summarizing traditional coolants, heat transfer properties and performances of potential new coolants such as nanofluids are also reviewed and analyzed.
Journal ArticleDOI

A review of entropy generation in nanofluid flow

TL;DR: In this article, a review of the literature on entropy generation due to flow and heat transfer of nanofluids in different geometries and flow regimes is presented, and some suggestions for future work are presented.
Journal ArticleDOI

Review of boiling heat transfer enhancement on micro/nanostructured surfaces

TL;DR: In this paper, several researches on the micro/nanostructured surfaces that have been designed to enhance boiling heat transfer are introduced and closely reviewed, and the special features of the existing surfaces capable of enhancing BoT are summarized.
References
More filters
Book

Heat Transfer

J. P. Holman
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Journal ArticleDOI

Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles

TL;DR: In this paper, it was shown that a "nanofluid" consisting of copper nanometer-sized particles dispersed in ethylene glycol has a much higher effective thermal conductivity than either pure or pure glycol or even polyethylene glycol containing the same volume fraction of dispersed oxide nanoparticles.
Journal ArticleDOI

Heat transfer enhancement of nanofluids

TL;DR: In this article, the authors present a procedure for preparing a nanofluid which is a suspension consisting of nanophase powders and a base liquid, and their TEM photographs are given to illustrate the stability and evenness of suspension.
Related Papers (5)