scispace - formally typeset
Search or ask a question

Showing papers in "Applied Physics Letters in 2003"


Journal ArticleDOI
TL;DR: In this paper, a flow-focusing geometry is integrated into a microfluidic device and used to study drop formation in liquid-liquid systems, where both monodisperse and polydisperse emulsions can be produced.
Abstract: A flow-focusing geometry is integrated into a microfluidic device and used to study drop formation in liquid–liquid systems. A phase diagram illustrating the drop size as a function of flow rates and flow rate ratios of the two liquids includes one regime where drop size is comparable to orifice width and a second regime where drop size is dictated by the diameter of a thin “focused” thread, so drops much smaller than the orifice are formed. Both monodisperse and polydisperse emulsions can be produced.

2,264 citations


Journal ArticleDOI
TL;DR: The thermal conductivities of individual single crystalline intrinsic Si nanowires with diameters of 22, 37, 56, and 115 nm were measured using a microfabricated suspended device over a temperature range of 20-320 K as discussed by the authors.
Abstract: The thermal conductivities of individual single crystalline intrinsic Si nanowires with diameters of 22, 37, 56, and 115 nm were measured using a microfabricated suspended device over a temperature range of 20–320 K. Although the nanowires had well-defined crystalline order, the thermal conductivity observed was more than two orders of magnitude lower than the bulk value. The strong diameter dependence of thermal conductivity in nanowires was ascribed to the increased phonon-boundary scattering and possible phonon spectrum modification.

1,596 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a transparent ZnO-based thin-film transistors (TFTs) for select-transistors in each pixel of an active-matrix liquid-crystal display.
Abstract: Highly transparent ZnO-based thin-film transistors (TFTs) are fabricated with optical transmission (including substrate) of ∼75% in the visible portion of the electromagnetic spectrum. Current–voltage measurements indicate n-channel, enhancement-mode TFT operation with excellent drain current saturation and a drain current on-to-off ratio of ∼107. Threshold voltages and channel mobilities of devices fabricated to date range from ∼10 to 20 V and ∼0.3 to 2.5 cm2/V s, respectively. Exposure to ambient light has little to no observable effect on the drain current. In contrast, exposure to intense ultraviolet radiation results in persistent photoconductivity, associated with the creation of electron-hole pairs by ultraviolet photons with energies greater than the ZnO band gap. Light sensitivity is reduced by decreasing the ZnO channel layer thickness. One attractive application for transparent TFTs involves their use as select-transistors in each pixel of an active-matrix liquid-crystal display.

1,415 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate efficient blue electrophosphorescence using exothermic energy transfer from a host consisting of N,N′-dicarbazolyl-3,5-benzene (mCP) to the phosphorescent iridium complex iridium(III)bis[(4,6-difluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic).
Abstract: We demonstrate efficient blue electrophosphorescence using exothermic energy transfer from a host consisting of N,N′-dicarbazolyl-3,5-benzene (mCP) to the phosphorescent iridium complex iridium(III)bis[(4,6-difluorophenyl)-pyridinato-N,C2′]picolinate (FIrpic). By examining the temperature dependence of the radiative lifetime and the photoluminescence of a film of mCP doped with FIrpic, we confirm the existence of exothermic energy transfer in contrast to the endothermic transfer characteristic of the N,N′-dicarbazolyl-4-4′-biphenyl and FIrpic system. In employing exothermic energy transfer between mCP and FIrpic, a maximum external electroluminescent quantum efficiency of (7.5±0.8)% and a luminous power efficiency of (8.9±0.9)lm/W are obtained, representing a significant increase in performance over previous endothermic blue electrophosphorescent devices.

1,177 citations


Journal ArticleDOI
TL;DR: In this paper, the authors fabricated ZnO thin-film transistors by rf magnetron sputtering on Si substrates held near room temperature, and the best devices had field effect mobility of more than 2 cm2/V and an on/off ratio>106.
Abstract: We fabricated ZnO thin-film transistors by rf magnetron sputtering on Si substrates held near room temperature. The best devices had field-effect mobility of more than 2 cm2/V s and an on/off ratio>106. These ZnO films had resistivity ∼105 ohm cm, with high optical transparency (>80% for wavelength >400 nm), and compressive stress <0.5 GPa. The combination of transparency in the visible, excellent transistor characteristics, and low-temperature processing makes ZnO thin-film transistors attractive for flexible electronics on temperature sensitive substrates.

1,115 citations


Journal ArticleDOI
TL;DR: In this paper, a perovskite-type SrTiO3 single crystal is used as the semiconducting channel for an n-type accumulation mode field effect transistor.
Abstract: A field-effect transistor has been constructed that employs a perovskite-type SrTiO3 single crystal as the semiconducting channel. This device functions as an n-type accumulation-mode device. The device was fabricated at room temperature by sputter-deposition of amorphous Al2O3 films as a gate insulator on the SrTiO3 substrate. The field-effect (FE) mobility is 0.1 cm2/V s and on-off ratio exceeds 100 at room temperature. The temperature dependence of the FE mobility down to 2 K shows a thermal-activation-type behavior with an activation energy of 0.6 eV.

1,045 citations


Journal ArticleDOI
TL;DR: In this paper, thin gold films are made on an elastomeric substrate with built-in compressive stress to form surface waves, which function as elastic electrical conductors.
Abstract: Stripes of thin gold films are made on an elastomeric substrate with built-in compressive stress to form surface waves. Because these waves can be stretched flat they function as elastic electrical conductors. Surprisingly, we observe electrical continuity not only up to an external strain of ∼2% reached by stretching the films first flat (∼0.4%) and then to the fracture strain of free-standing gold films (∼1%), but up to ∼22%. Such large strains will permit making stretchable electric conductors that will be essential to three-dimensional electronic circuits.

939 citations


Journal ArticleDOI
TL;DR: In this paper, the critical heat flux (CHF) in pool boiling from a flat square heater immersed in nanofluid (water mixed with extremely small amount of nanosized particles) was investigated.
Abstract: The present study is to enhance the critical heat flux (CHF) in pool boiling from a flat square heater immersed in nanofluid (water mixed with extremely small amount of nanosized particles). The test results show that the enhancement of CHF was drastic when nanofluid is used as a cooling liquid instead of pure water. The experiment was performed to measure and compare pool boiling curves of pure water and nanofluid at the pressure of 2.89 psia (Tsat=60 °C) using 1×1 cm2 polished copper surfaces as a boiling surface. The tested nanofluid contains alumina (Al2O3) nanoparticles dispersed in distilled and deionized water. Tested concentrations of nanoparticles range from 0 g/l to 0.05 g/l. The measured pool boiling curves of nanofluids saturated at 60 °C have demonstrated that the CHF increases dramatically (∼200% increase) compared to pure water case; however, the nucleate boiling heat transfer coefficients appear to be about the same.

911 citations


Journal ArticleDOI
TL;DR: In this article, the transport properties of random networks of single-wall carbon nanotubes fabricated into thin-film transistors were investigated and shown to behave like a p-type semiconductor with a field effect mobility of ∼10 cm2/V and a transistor on-to-off ratio of ∼105.
Abstract: We report on the transport properties of random networks of single-wall carbon nanotubes fabricated into thin-film transistors. At low nanotube densities (∼1 μm−2) the networks are electrically continuous and behave like a p-type semiconductor with a field-effect mobility of ∼10 cm2/V s and a transistor on-to-off ratio ∼105. At higher densities (∼10 μm−2) the field-effect mobility can exceed 100 cm2/V s; however, in this case the network behaves like a narrow band gap semiconductor with a high off-state current. The fact that useful device properties are achieved without precision assembly of the nanotubes suggests the random carbon nanotube networks may be a viable material for thin-film transistor applications.

843 citations


Journal ArticleDOI
TL;DR: In this paper, the authors measured the thermal conductivities of two kinds of Au nanoparticles in water and toluene media and found that they showed thermal conductivity enhancement of 5% -21% in the temperature range of 30-60°C at a loading of 0.000 -1.011%.
Abstract: Thermal conductivities of two kinds of Au nanoparticles were measured in water and toluene media. The water soluble particles, 10–20 nm in mean diameter, made with citrate stabilization showed thermal conductivity enhancement of 5%–21% in the temperature range of 30–60 °C at a loading of 0.000 26 (by volume). The effect was 7%–14% for Au particles stabilized with a monolayer of octadecanethiol even for a loading of 0.011%. Comparatively lower thermal conductivity enhancement was observed for larger diameter Ag particles for significantly higher loading. Effective enhancement of 9%, even at vanishing concentrations, points to additional factors in the thermal conductivity mechanism in nanofluids. Results also point to important chemical factors such as the need for direct contact of the metal surface with the solvent medium to improve enhancement.

755 citations


Journal ArticleDOI
TL;DR: In this paper, a Pentacene-based thin-film integrated circuit with polymeric shadow masks and powered by near-field coupling at radio frequencies of 125 kHz and above 6 MHz has been demonstrated.
Abstract: Pentacene-based thin-film integrated circuits patterned only with polymeric shadow masks and powered by near-field coupling at radio frequencies of 125 kHz and above 6 MHz have been demonstrated. Sufficient amplitude modulation of the rf field was obtained to externally detect a clock signal generated by the integrated circuit. The circuits operate without the use of a diode rectification stage. This demonstration provides the basis for more sophisticated low-cost rf transponder circuitry using organic semiconductors.

Journal ArticleDOI
TL;DR: In this article, a charge-trapping phosphorescent guest, iridium(III) bis(4′,6′-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) doped in the wide-energy-gap hosts, diphenyldi(o-tolyl)silane (UGH1) and p-bis(triphenylsilyly)benzene (UGH2), where exciton formation occurs directly on the guest molecules.
Abstract: We demonstrate efficient, deep-blue organic electrophosphorescence using a charge-trapping phosphorescent guest, iridium(III) bis(4′,6′-difluorophenylpyridinato)tetrakis(1-pyrazolyl)borate (FIr6) doped in the wide-energy-gap hosts, diphenyldi(o-tolyl)silane (UGH1) and p-bis(triphenylsilyly)benzene (UGH2), where exciton formation occurs directly on the guest molecules. Charge trapping on the guest is confirmed by the dependence of the drive voltage and electroluminescence spectrum on guest concentration. Ultraviolet photoemission spectroscopy measurements establish the relative highest occupied molecular orbital positions of FIr6 in UGH1 and UGH2. Peak quantum and power efficiencies of (8.8±0.9)% and (11.0±1.1) lm/W in UGH1 and (11.6±1.2)% and (13.9±1.4) lm/W in UGH2 are obtained, while the emission in both cases is from FIr6 and is characterized by Commission Internationale de l’Eclairage coordinates of (x=0.16, y=0.26) in UGH2.

Journal ArticleDOI
TL;DR: In this article, the effect of surface energies, strains, and stresses on the size-dependent elastic state of embedded inhomogeneities is investigated and closed-form expressions are derived for the elastic state with surface effects using a variational formulation, showing that surface elasticity can significantly alter the fundamental nature of stress state at nanometer length scales.
Abstract: The effect of surface energies, strains, and stresses on the size-dependent elastic state of embedded inhomogeneities are investigated. At nanolength scales, due to the increasing surface-to-volume ratio, surface effects become important and induce a size dependency in the otherwise size-independent classical elasticity solutions. In this letter, closed-form expressions are derived for the elastic state of eigenstrained spherical inhomogeneities with surface effects using a variational formulation. Our results indicate that surface elasticity can significantly alter the fundamental nature of stress state at nanometer length scales. Additional applications of our work on nanostructures such as quantum dots, composites, etc. are implied.

Journal ArticleDOI
TL;DR: In this article, the two-photon absorption coefficient and Kerr coefficient of bulk crystalline silicon are determined near the telecommunication wavelengths of 1.3 and 1.55 μm using femtosecond pulses and a balanced Z-scan technique.
Abstract: The two-photon absorption coefficient and Kerr coefficient of bulk crystalline silicon are determined near the telecommunication wavelengths of 1.3 and 1.55 μm using femtosecond pulses and a balanced Z-scan technique. A phase shift sensitivity of the order of 1 mrad is achieved, enabling the accurate measurement of third-order nonlinear coefficients at fluences smaller than 100 μJ/cm2. From the two-photon absorption coefficient (β∼0.8 cm/GW) and the Kerr coefficient (n2∼4×10−14 cm2/W) at a wavelength λ=1.54 μm, a value F∼0.35 for the nonlinear figure of merit for all-optical switching is determined.

Journal ArticleDOI
TL;DR: In this paper, a magnetoresistance ratio of more than 1800% is obtained at 4 K, from which they infer an electrode spin polarization of at least 95% and demonstrate the half-metallic nature of mixed-valence manganites and demonstrates their capability as a spin analyzer.
Abstract: We have performed magnetotransport measurements on La2/3Sr1/3MnO3/SrTiO3/La2/3Sr1/3MnO3 magnetic tunnel junctions. A magnetoresistance ratio of more than 1800% is obtained at 4 K, from which we infer an electrode spin polarization of at least 95%. This result strongly underscores the half-metallic nature of mixed-valence manganites and demonstrates their capability as a spin analyzer. The magnetoresistance extends up to temperatures of more than 270 K. We argue that these improvements over most previous works may result from optimizing the patterning process for oxide heterostructures.

Journal ArticleDOI
TL;DR: In this article, the authors improved the emission efficiency in an organic light-emitting device (OLED) based on iridium (III)bis[(4,6-di-fluoropheny)-pyridinato-N,C2′]picolinate (FIrpic).
Abstract: We have significantly improved the emission efficiency in an organic light-emitting device (OLED) based on iridium (III)bis[(4,6-di-fluoropheny)-pyridinato-N,C2′]picolinate (FIrpic). To improve the efficiency, 4,4′-bis(9-carbazolyl)-2,2′-dimethyl-biphenyl, which has a high triplet energy, was used as the carrier-transporting host for the emissive layer. The FIrpic-based OLED exhibited a maximum external quantum efficiency of 10.4%, corresponding to a current efficiency of 20.4 cd/A, and a maximum power efficiency of 10.5 lm/W. The efficiency was drastically improved compared to that of a previously reported FIrpic-based OLED. This result indicates that triplet energy is efficiently confined on FIrpic molecules, resulting in the high efficiency.

Journal ArticleDOI
TL;DR: In this article, the authors used noncovalently functionalized, soluble single-walled carbon nanotubes (SWNTs) to construct composites with very low percolation threshold (0.05 − 0.1 wt
Abstract: Homogeneous carbon nanotube/polymer composites were fabricated using noncovalently functionalized, soluble single-walled carbon nanotubes (SWNTs). These composites showed dramatic improvements in the electrical conductivity with very low percolation threshold (0.05–0.1 wt % of SWNT loading). By significantly improving the dispersion of SWNTs in commercial polymers, we show that only very low SWNT loading is needed to achieve the conductivity levels required for various electrical applications without compromising the host polymer’s other preferred physical properties and processability. In contrast to previous techniques, our method is applicable to various host polymers and does not require lengthy sonication.

Journal ArticleDOI
TL;DR: In this article, a p-type ZnO was prepared on a sapphire substrate using P2O5 as a phosphorus dopant, which showed a hole concentration of 1.0×1017-1.7×1019/cm3, a mobility of 0.53-3.51
Abstract: A p-type ZnO was prepared on a sapphire substrate using P2O5 as a phosphorus dopant. As-grown n-type ZnO films doped with phosphorus showed electron concentrations of 1016–1017/cm3 and these films were converted to p-type ZnO by a thermal annealing process at a temperature above 800 °C under a N2 ambient. The electrical properties of the p-type ZnO showed a hole concentration of 1.0×1017–1.7×1019/cm3, a mobility of 0.53–3.51 cm2/V s, and a low resistivity of 0.59–4.4 Ω cm. The phosphorus-doped ZnO thin films showed a strong photoluminescence peak at 3.35 eV at 10 K, which is closely related to neutral acceptor bound excitons of the p-type ZnO. This thermal activation process was very reproducible and effective in producing phosphorus-doped p-type ZnO thin films, and the produced p-type ZnO was very stable.

Journal ArticleDOI
TL;DR: In this article, a large quantity of nanosized ZnO tubular structures was prepared using a very simple thermal evaporation of mixed Zn-ZnO powders under a wet oxidation condition.
Abstract: A large quantity of nanosized ZnO tubular structures was prepared using a very simple thermal evaporation of mixed Zn–ZnO powders under a wet oxidation condition. The ZnO nanotubes have a hollow core with crystalline wall of 8–20 nm in thickness. Optical properties of ZnO nanotubes were studied at room temperature. Raman peaks arising from the ZnO nanotubes were analyzed, which correspond well to that of the bulk ZnO sample. The photoluminescence measurements of ZnO nanotubes revealed an intensive UV peak at 377 nm corresponding to the free exciton emission, and a broad peak at about 500 nm arising from defect-related emission.

Journal ArticleDOI
TL;DR: In this article, a multistep pulsed-laser deposition (PLD) process is presented for epitaxial, nominally undoped ZnO thin films of total thickness of 1 to 2 μm on c-plane sapphire substrates.
Abstract: A multistep pulsed-laser deposition (PLD) process is presented for epitaxial, nominally undoped ZnO thin films of total thickness of 1 to 2 μm on c-plane sapphire substrates. We obtain reproducibly high electron mobilities from 115 up to 155 cm2/V s at 300 K in a narrow carrier concentration range from 2 to 5×1016 cm−3. The key issue of the multistep PLD process is the insertion of 30-nm-thin ZnO relaxation layers deposited at reduced substrate temperature. The high-mobility samples show atomically flat surface structure with grain size of about 0.5–1 μm, whereas the surfaces of low-mobility films consist of clearly resolved hexagonally faceted columnar grains of only 200-nm size, as shown by atomic force microscopy. Structurally optimized PLD ZnO thin films show narrow high-resolution x-ray diffraction peak widths of the ZnO(0002) ω- and 2Θ-scans as low as 151 and 43 arcsec, respectively, and narrow photoluminescence linewidths of donor-bound excitons of 1.7 meV at 2 K.

Journal ArticleDOI
TL;DR: In this paper, the phonon modes of Fe, Sb, Al, Ga, and Li doped ZnO thin films, grown by pulsed-laser deposition on c-plane sapphire substrates, were investigated.
Abstract: Polarized micro-Raman measurements were performed to study the phonon modes of Fe, Sb, Al, Ga, and Li doped ZnO thin films, grown by pulsed-laser deposition on c-plane sapphire substrates. Additional modes at about 277, 511, 583, and 644 cm−1, recently assigned to N incorporation [A. Kaschner et al., Appl. Phys. Lett. 80, 1909 (2002)], were observed for Fe, Sb, and Al doped films, intentionally grown without N. The mode at 277 cm−1 occurs also for Ga doped films. These modes thus cannot be related directly to N incorporation. Instead, we suggest host lattice defects as their origin. Further additional modes at 531, 631, and 720 cm−1 seem specific for the Sb, Ga, and Fe dopants, respectively. Li doped ZnO did not reveal additional modes.

Journal ArticleDOI
TL;DR: A bottom-up approach to integrate multiwalled carbon nanotubes (MWNTs) into multilevel interconnects in silicon integrated-circuit manufacturing is reported in this paper.
Abstract: We report a bottom-up approach to integrate multiwalled carbon nanotubes (MWNTs) into multilevel interconnects in silicon integrated-circuit manufacturing. MWNTs are grown vertically from patterned catalyst spots using plasma-enhanced chemical vapor deposition. We demonstrate the capability to grow aligned structures ranging from a single tube to forest-like arrays at desired locations. SiO2 is deposited to encapsulate each nanotube and the substrate, followed by a mechanical polishing process for planarization. MWNTs retain their integrity and demonstrate electrical properties consistent with their original structure.

Journal ArticleDOI
TL;DR: In this article, high-spatial-frequency periodic structures on the surfaces of InP, GaP, and GaAs have been observed after multiple-pulse femtosecond laser irradiation at wavelengths in the transparency regions of the respective solids.
Abstract: High-spatial-frequency periodic structures on the surfaces of InP, GaP, and GaAs have been observed after multiple-pulse femtosecond laser irradiation at wavelengths in the transparency regions of the respective solids. The periods of the structures are substantially shorter than the wavelengths of the incident laser fields in the bulk materials. In contrast, high-frequency structures were not observed for laser photon energies above the band gaps of the target materials.

Journal ArticleDOI
TL;DR: In this paper, a model system, Ti1-xAlxN, was chosen as such coatings are known for their excellent wear resistance enabling improved m... and the phenomenon of age hardening could be evidenced in thin film applications.
Abstract: The phenomenon of age hardening could be evidenced in thin film applications. A model system, Ti1-xAlxN was chosen as such coatings are known for their excellent wear resistance enabling improved m ...

Journal ArticleDOI
TL;DR: In this article, carbon nanotubes (CNTs) deposited by plasmaenhanced chemical vapor deposition on Si3N4/Si substrates have been investigated as resistive gas sensors for NO2.
Abstract: Carbon nanotubes (CNTs) deposited by plasma-enhanced chemical vapor deposition on Si3N4/Si substrates have been investigated as resistive gas sensors for NO2. Upon exposure to NO2, the electrical resistance of the CNTs was found to decrease. The maximum variation of resistance to NO2 was found at an operating temperature of around 165 °C. The sensor exhibited high sensitivity to NO2 gas at concentrations as low as 10 ppb, fast response time, and good selectivity. A thermal treatment method, based on repeated heating and cooling of the films, adjusted the resistance of the sensor film and optimized the sensor response to NO2.

Journal ArticleDOI
TL;DR: In this article, the force required to separate a carbon nanotube from a solid polymer matrix was measured by performing reproducible nanopullout experiments using atomic force microscopy, and the results indicated that the polymer matrix in close vicinity of the carbon-nanotube is able to withstand stresses that would otherwise cause considerable yield in a bulk polymer specimen.
Abstract: The force required to separate a carbon nanotube from a solid polymer matrix has been measured by performing reproducible nanopullout experiments using atomic force microscopy. The separation stress is found to be remarkably high, indicating that carbon nanotubes are effective at reinforcing a polymer. These results imply that the polymer matrix in close vicinity of the carbon nanotube is able to withstand stresses that would otherwise cause considerable yield in a bulk polymer specimen.

Journal ArticleDOI
TL;DR: In this article, high transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions.
Abstract: Highly transparent conductive, aluminum-doped zinc oxide (ZnO:Al) films were deposited on glass substrates by midfrequency magnetron sputtering of metallic aluminum-doped zinc target. ZnO:Al films with surface work functions between 3.7 and 4.4 eV were obtained by varying the sputtering conditions. Organic light-emitting diodes (OLEDs) were fabricated on these ZnO:Al films. A current efficiency of higher than 3.7 cd/A, was achieved. For comparison, 3.9 cd/A was achieved by the reference OLEDs fabricated on commercial indium–tin–oxide substrates.

Journal ArticleDOI
TL;DR: In this article, the authors describe a nanometer-scale switch that uses a copper sulfide film and demonstrate its performance, which is a chalcogenide semiconductor sandwiched between copper and metal electrodes.
Abstract: We describe a nanometer-scale switch that uses a copper sulfide film and demonstrate its performance. The switch consists of a copper sulfide film, which is a chalcogenide semiconductor, sandwiched between copper and metal electrodes. Applying a positive or negative voltage to the metal electrode can repeatedly switch its conductance in under 100 μs. Each state can persist without a power supply for months, demonstrating the feasibility of nonvolatile memory with its nanometer scale. While biasing voltages, copper ions can migrate in copper sulfide film and can play an important role in switching.

Journal ArticleDOI
TL;DR: In this article, the energy level alignment at interfaces between three electroactive conjugated organic molecular materials, i.e., N, N′-bis-(1-naphthyl)-N,N′-diphenyl1-1, 1-biphenylon1-4, 4′-dimine; para-sexiphenym; pentacene, and two high work function electrode materials, are determined.
Abstract: Ultraviolet photoemission spectroscopy is used to determine the energy level alignment at interfaces between three electroactive conjugated organic molecular materials, i.e., N,N′-bis-(1-naphthyl)-N,N′-diphenyl1-1,1-biphenyl1-4,4′-diamine; para-sexiphenyl; pentacene, and two high work function electrode materials, i.e., gold and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate). Although both electrode surfaces have a similar work function (∼5 eV), the hole injection barrier and the interfacial dipole barrier are found to be significantly smaller for all the interfaces formed on the polymer as compared to the metal. This important and very general result is linked to one of the basic mechanisms that control molecular level alignment at interfaces with metals, i.e., the reduction of the electronic surface dipole contribution to the metal work function by adsorbed molecules.

Journal ArticleDOI
TL;DR: In this paper, a well-aligned array of ZnO nanoneedles was fabricated using a simple vapor phase growth, and the diameters of the nanomeedle tips are as small as several nanometers, which is highly in favor of the field emission.
Abstract: Well-aligned arrays of ZnO nanoneedles were fabricated using a simple vapor phase growth. The diameters of the nanoneedle tips are as small as several nanometers, which is highly in favor of the field emission. Field-emission measurements using the nanoneedle arrays as cathode showed emission current density as high as 2.4 mA/cm2 under the field of 7 V/μm, and a very low turn-on field of 2.4 V/μm. Such a high emission current density is attributed to the high aspect ratio of the nanoneedles. The high emission current density, high stability, and low turn-on field make the ZnO nanoneedle arrays one of the promising candidates for field-emission displays.