scispace - formally typeset
Journal ArticleDOI

A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition

Reads0
Chats0
TLDR
It is agreed that the uncertainty is strongly dependent upon scale and that the question as stated is answerable with greater confidence both very near and very far from major point sources, assuming that the “global pool” is a recognizable “source.”
Abstract
A panel of international experts was convened in Madison, Wisconsin, in 2005, as part of the 8th International Conference on Mercury as a Global Pollutant. Our charge was to address the state of science pertinent to source attribution, specifically our key question was: "For a given location, can we ascertain with confidence the relative contributions of local, regional, and global sources, and of natural versus anthropogenic emissions to mercury deposition?" The panel synthesized new research pertinent to this question published over the past decade, with emphasis on four major research topics: long-term anthropogenic change, current emission and deposition trends, chemical transformations and cycling, and modeling and uncertainty. Within each topic, the panel drew a series of conclusions, which are presented in this paper. These conclusions led us to concur that the answer to our question is a "qualified yes," with the qualification being dependent upon the level of uncertainty one is willing to accept. We agreed that the uncertainty is strongly dependent upon scale and that our question as stated is answerable with greater confidence both very near and very far from major point sources, assuming that the "global pool" is a recognizable "source." Many regions of interest from an ecosystem-exposure standpoint lie in between, where source attribution carries the greatest degree of uncertainty.

read more

Citations
More filters
Journal ArticleDOI

Source apportionment of atmospheric mercury in the remote marine atmosphere: Mace Head GAW station, Irish western coast

TL;DR: In this article, the authors examined recent atmospheric mercury concentrations measured with a high temporal resolution of 15 min at Mace Head, a GAW station on the western coast of Ireland, and attributed a direct contribution of 34% (0.44" ng"m−3 ) to primary sources.
Journal ArticleDOI

Distribution of atmospheric gaseous elemental mercury (Hg(0)) from the Sea of Japan to the Arctic, and Hg(0) evasion fluxes in the Eastern Arctic Seas: Results from a joint Russian-Chinese cruise in fall 2018.

TL;DR: In the Eastern Arctic Seas and the north-western Pacific, Hg(0) evasion fluxes were significantly dependent on river runoff and negatively correlated with water temperature and positively correlated with salinity, suggesting a proximity to areas with contiguous ice and higher dissolved Hg (0) concentrations in the surface seawater.
Journal ArticleDOI

Decline in atmospheric mercury deposition in London

TL;DR: Monitoring of Hg deposition in London suggests that Hg re-emission from depositional sinks (e.g. soils, water bodies) may be an important source to London's atmosphere, thereby delaying response to the major reductions in direct emissions to the atmosphere since the 1970s.
Journal ArticleDOI

Tracing the Transboundary Transport of Mercury to the Tibetan Plateau Using Atmospheric Mercury Isotopes.

TL;DR: The authors' results provided direct evidence from Hg isotopes to reveal the distinct patterns of transboundary transport to the Tibetan Plateau shaped by landforms and climates, which is critical to fully understand the biogeochemical cycling of Hg in the high-altitude regions.
References
More filters
Journal ArticleDOI

The biogeochemical cycling of elemental mercury: Anthropogenic influences☆

TL;DR: A review of the available information on global Hg cycling shows that the atmosphere and surface ocean are in rapid equilibrium; the evasion of Hg0 from the oceans is balanced by the total oceanic deposition of hg(II) from the atmosphere as mentioned in this paper.
Journal ArticleDOI

The Case for Atmospheric Mercury Contamination in Remote Areas

TL;DR: A review of the weaknesses in interpretation and the choice of information that has been used to argue against atmospheric Hg contamination can be found in this paper, where the authors examine the weaknesses of the information used to support the prevailing scientific view that natural geologic sources are the principal contributors of Hg.
Journal ArticleDOI

Global anthropogenic mercury emission inventory for 2000

TL;DR: Wilson et al. as mentioned in this paper presented a new inventory of global emissions of mercury to the atmosphere from anthropogenic sources for the year 2000, showing that the largest emissions of Hg to the global atmosphere occur from combustion of fossil fuels, mainly coal in utility, industrial, and residential boilers.
Journal ArticleDOI

Arctic springtime depletion of mercury

TL;DR: In this paper, the authors show that during the spring (April to early June) of 1995, there were frequent episodic depletions in mercury vapour concentrations in Arctic surface air.
Related Papers (5)