scispace - formally typeset
Journal ArticleDOI

A Synthesis of Progress and Uncertainties in Attributing the Sources of Mercury in Deposition

Reads0
Chats0
TLDR
It is agreed that the uncertainty is strongly dependent upon scale and that the question as stated is answerable with greater confidence both very near and very far from major point sources, assuming that the “global pool” is a recognizable “source.”
Abstract
A panel of international experts was convened in Madison, Wisconsin, in 2005, as part of the 8th International Conference on Mercury as a Global Pollutant. Our charge was to address the state of science pertinent to source attribution, specifically our key question was: "For a given location, can we ascertain with confidence the relative contributions of local, regional, and global sources, and of natural versus anthropogenic emissions to mercury deposition?" The panel synthesized new research pertinent to this question published over the past decade, with emphasis on four major research topics: long-term anthropogenic change, current emission and deposition trends, chemical transformations and cycling, and modeling and uncertainty. Within each topic, the panel drew a series of conclusions, which are presented in this paper. These conclusions led us to concur that the answer to our question is a "qualified yes," with the qualification being dependent upon the level of uncertainty one is willing to accept. We agreed that the uncertainty is strongly dependent upon scale and that our question as stated is answerable with greater confidence both very near and very far from major point sources, assuming that the "global pool" is a recognizable "source." Many regions of interest from an ecosystem-exposure standpoint lie in between, where source attribution carries the greatest degree of uncertainty.

read more

Citations
More filters
Journal ArticleDOI

Mercury wet deposition and speciated mercury air concentrations at rural and urban sites across New York state: Temporal patterns, sources and scavenging coefficients.

TL;DR: Scavenging coefficients (SC) of 680, 630, 850 for GOM and 410, 320, and 410 for PBM at Bronx, Rochester, and Potsdam, respectively, suggest GOM is responsible for most of the scavenged Hg.
Journal ArticleDOI

Polar Microbiology: Recent Advances and Future Perspectives

TL;DR: In this special issue, some of the leaders in the field have described their work, ideas and findings in a collection of reviews and original research articles with studies ranging from one of the oldest permafrost areas on Earth, located in Siberia, to the accretion ice of Lake Vostok, Located in Antarctica.
Journal ArticleDOI

Four-year record of mercury wet deposition in one typical industrial city in southwest China

TL;DR: Wang et al. as mentioned in this paper conducted long-term monitoring of Hg wet deposition at three sites in Chongqing, and the four-year volume-weighted mean concentrations (VWC) of total mercury (THg) and methylmercury (MeHg) in precipitation were 34.83±11.41%.
Journal ArticleDOI

A decline in Arctic Ocean mercury suggested by differences in decadal trends of atmospheric mercury between the Arctic and northern midlatitudes

TL;DR: Atmospheric mercury (Hg) in the Arctic shows much weaker or insignificant annual declines relative to northern midlatitudes over the past decade (2000-2009) but with strong seasonality in trends as mentioned in this paper.
Journal ArticleDOI

Temporal patterns of atmospheric mercury species in northern Mississippi during 2011–2012: Influence of sudden population swings

TL;DR: Backward air mass trajectory modeling for the ten highest peaks for each mercury species revealed that the majority of these events occurred from air masses that passed through the northern continental US region.
References
More filters
Journal ArticleDOI

The biogeochemical cycling of elemental mercury: Anthropogenic influences☆

TL;DR: A review of the available information on global Hg cycling shows that the atmosphere and surface ocean are in rapid equilibrium; the evasion of Hg0 from the oceans is balanced by the total oceanic deposition of hg(II) from the atmosphere as mentioned in this paper.
Journal ArticleDOI

The Case for Atmospheric Mercury Contamination in Remote Areas

TL;DR: A review of the weaknesses in interpretation and the choice of information that has been used to argue against atmospheric Hg contamination can be found in this paper, where the authors examine the weaknesses of the information used to support the prevailing scientific view that natural geologic sources are the principal contributors of Hg.
Journal ArticleDOI

Global anthropogenic mercury emission inventory for 2000

TL;DR: Wilson et al. as mentioned in this paper presented a new inventory of global emissions of mercury to the atmosphere from anthropogenic sources for the year 2000, showing that the largest emissions of Hg to the global atmosphere occur from combustion of fossil fuels, mainly coal in utility, industrial, and residential boilers.
Journal ArticleDOI

Arctic springtime depletion of mercury

TL;DR: In this paper, the authors show that during the spring (April to early June) of 1995, there were frequent episodic depletions in mercury vapour concentrations in Arctic surface air.
Related Papers (5)