scispace - formally typeset
Journal ArticleDOI

A universal principle for a rational design of single-atom electrocatalysts

Reads0
Chats0
TLDR
In this article, a universal design principle was proposed to evaluate the catalytic activity of single-atom catalysts for electrochemical reactions, which is a key to future renewable energy technology.
Abstract
Developing highly active single-atom catalysts for electrochemical reactions is a key to future renewable energy technology. Here we present a universal design principle to evaluate the activity of graphene-based single-atom catalysts towards the oxygen reduction, oxygen evolution and hydrogen evolution reactions. Our results indicate that the catalytic activity of single-atom catalysts is highly correlated with the local environment of the metal centre, namely its coordination number and electronegativity and the electronegativity of the nearest neighbour atoms, validated by available experimental data. More importantly, we reveal that this design principle can be extended to metal–macrocycle complexes. The principle not only offers a strategy to design highly active nonprecious metal single-atom catalysts with specific active centres, for example, Fe-pyridine/pyrrole-N4 for the oxygen reduction reaction; Co-pyrrole-N4 for the oxygen evolution reaction; and Mn-pyrrole-N4 for the hydrogen evolution reaction to replace precious Pt/Ir/Ru-based catalysts, but also suggests that macrocyclic metal complexes could be used as an alternative to graphene-based single-atom catalysts.

read more

Citations
More filters
Journal ArticleDOI

Pore size effect of graphyne supports on CO2 electrocatalytic activity of Cu single atoms

TL;DR: Comparisons prove that the graphynes with large pores are appropriate supports for Cu adatoms for CO2 electroreduction due to the low-coordinated Cu atoms and weak-steric-repulsion carbon skeleton, and provides a new insight into the rational design of supports for SACs.
Journal ArticleDOI

Tuning Single-Atom Catalysts of Nitrogen-Coordinated Transition Metals for Optimizing Oxygen Evolution and Reduction Reactions

TL;DR: Single-atom catalysts based on Earth-abundant elements have recently emerged as one of the most promising alternatives to the precious-metal-based catalysts for oxygen evolution reaction (OER) and... as mentioned in this paper.
Journal ArticleDOI

Improved Oxygen Reduction Reaction Activity of Nanostructured CoS2 through Electrochemical Tuning

TL;DR: In this paper, the Pt-free oxygen reduction reaction (ORR) electrocatalysts have been actively pursued among the current electrocatalyst research community, and the family of transition-metal chalc...
Journal ArticleDOI

Identifying Metallic Transition-Metal Dichalcogenides for Hydrogen Evolution through Multilevel High-Throughput Calculations and Machine Learning.

TL;DR: In this paper, a systematic high-throughput calculation screening for all possible existing two-dimensional TMD (2D-TMD) materials to obtain high-performance hydrogen evolution reaction (HER) electrocatalysts by using a few important criteria, such as zero band gap, highest thermodynamic stability among available phases, low vacancy formation energy, and approximately zero hydrogen adsorption energy.
Journal ArticleDOI

Electrocatalytic Reduction of Carbon Dioxide to Methane on Single Transition Metal Atoms Supported on a Defective Boron Nitride Monolayer: First Principle Study

TL;DR: In this paper, the authors used resources provided by the National Computing Infrastructure facility at the Australian National University, allocated through both the National Computational Merit Allocation Scheme supported by the Australian Government and the Australian Research Council grant LE120100181 (Enhanced merit-based access and support at the new NCI petascale supercomputing facility, 2012-2015).
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

TL;DR: A detailed description and comparison of algorithms for performing ab-initio quantum-mechanical calculations using pseudopotentials and a plane-wave basis set is presented in this article. But this is not a comparison of our algorithm with the one presented in this paper.
Journal ArticleDOI

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study

TL;DR: In this article, the authors improved the description of both electron energy loss spectra and parameters characterizing the structural stability of the material compared with local spin density functional theory by taking better account of electron correlations in the $3d$ shell of metal ions in nickel oxide.
Related Papers (5)