Absence of low energy magnetic spin-fluctuations in isovalently and aliovalently doped LaCo2B2 superconducting compounds.
29 Jun 2016-Journal of Physics: Condensed Matter (IOP Publishing)-Vol. 28, Iss: 34, pp 345701-345701
TL;DR: The site selective NMR experiment reveals the multiband nature of the Fermi surface in these systems and indicates the absence of correlated low energy magnetic spin-fluctuations in the normal state, which is in contrast to other Fe-based pnictides.
Abstract: Magnetization, resistivity and (11)B, (59)Co NMR measurements have been performed on the Pauli paramagnet [Formula: see text], and the superconductors [Formula: see text] ([Formula: see text] K) and [Formula: see text] ([Formula: see text] K). The site selective NMR experiment reveals the multiband nature of the Fermi surface in these systems. The temperature independent Knight shift and 1/T 1 T clearly indicate the absence of correlated low energy magnetic spin-fluctuations in the normal state, which is in contrast to other Fe-based pnictides. The density of states (DOS) of Co 3d electrons has been enhanced in superconducting [Formula: see text] and [Formula: see text] with respect to the non superconducting reference compound [Formula: see text]. The occurrence of superconductivity is related to the DOS enhancement.
Citations
More filters
References
More filters
[...]
TL;DR: In this article, the main formulas governing the analysis of the Bragg magnetic scattering are summarized and shortly discussed and the method of profile fitting without a structural model to get precise integrated intensities and refine the propagation vector(s) of the magnetic structure is discussed.
Abstract: In spite of intrinsic limitations, neutron powder diffraction is, and will still be in the future, the primary and most straightforward technique for magnetic structure determination. In this paper some recent improvements in the analysis of magnetic neutron powder diffraction data are discussed. After an introduction to the subject, the main formulas governing the analysis of the Bragg magnetic scattering are summarized and shortly discussed. Next, we discuss the method of profile fitting without a structural model to get precise integrated intensities and refine the propagation vector(s) of the magnetic structure. The simulated annealing approach for magnetic structure determination is briefly discussed and, finally, some features of the program FullProf concerning the magnetic structure refinement are presented and discussed. The different themes are illustrated with simple examples.
10,574 citations
[...]
IBM1
TL;DR: The recent development of phase-sensitive tests, combined with the refinement of several other symmetry-sensitive techniques, has for the most part settled this controversy in favor of predominantly $d$-wave symmetry for a number of optimally hole-and electron-doped cuprates as mentioned in this paper.
Abstract: Pairing symmetry in the cuprate superconductors is an important and controversial topic. The recent development of phase-sensitive tests, combined with the refinement of several other symmetry-sensitive techniques, has for the most part settled this controversy in favor of predominantly $d$-wave symmetry for a number of optimally hole- and electron-doped cuprates. This paper begins by reviewing the concepts of the order parameter, symmetry breaking, and symmetry classification in the context of the cuprates. After a brief survey of some of the key non-phase-sensitive tests of pairing symmetry, the authors extensively review the phase-sensitive methods, which use the half-integer flux-quantum effect as an unambiguous signature for $d$-wave pairing symmetry. A number of related symmetry-sensitive experiments are described. The paper concludes with a brief discussion of the implications, both fundamental and applied, of the predominantly $d$-wave pairing symmetry in the cuprates.
1,353 citations
[...]
TL;DR: The response of the worldwide scientific community to the discovery in 2008 of superconductivity at T c'='26'K in the Fe-based compound LaFeAsO1−x F x has been very enthusiastic.
Abstract: The response of the worldwide scientific community to the discovery in 2008 of superconductivity at T c = 26 K in the Fe-based compound LaFeAsO1−x F x has been very enthusiastic. In short order, ot...
1,308 citations
[...]
TL;DR: Comparison of the structural evolution of CeFeAsO(1-x)F(x) with other Fe-based superconductors suggests that the structural perfection of the Fe-As tetrahedron is important for the high-Tc superconductivity in these Fe pnictides.
Abstract: According to a neutron-scattering study of the structural and magnetic properties of the pnictide CeFeAsO1−xFx, the phase diagram of this material shows considerable similarities with the high-Tc cuprate superconductors. These results are an important addition to the effort to find out where superconductivity in these iron–arsenic alloys arises.
537 citations
[...]
TL;DR: In this article, the superconducting phase diagram of NdFeAsO 1- y was established as a function of oxygen content, which was determined by Rietveld refinement.
Abstract: The crystal structure of LnFeAsO 1- y (Ln = La, Nd) has been studied by the powder neutron diffraction technique. The superconducting phase diagram of NdFeAsO 1- y is established as a function of oxygen content which is determined by Rietveld refinement. The small As–Fe bond length suggests that As and Fe atoms are connected covalently. FeAs 4 -tetrahedrons transform toward a regular shape with increasing oxygen deficiency. Superconducting transition temperatures seem to attain maximum values for regular FeAs 4 -tetrahedrons.
509 citations