scispace - formally typeset
Open AccessJournal ArticleDOI

Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts

TLDR
In this article, a type of polymer electrolyte fuel cells (PEFC) employing a hydroxide ion-conductive polymer, quaternary ammonium polysulphone, as alkaline electrolyte and nonprecious metals, chromium-decorated nickel and silver, as the catalyst for the negative and positive electrodes, respectively.
Abstract
In recent decades, fuel cell technology has been undergoing revolutionary developments, with fundamental progress being the replacement of electrolyte solutions with polymer electrolytes, making the device more compact in size and higher in power density. Nowadays, acidic polymer electrolytes, typically Nafion, are widely used. Despite great success, fuel cells based on acidic polyelectrolyte still depend heavily on noble metal catalysts, predominantly platinum (Pt), thus increasing the cost and hampering the widespread application of fuel cells. Here, we report a type of polymer electrolyte fuel cells (PEFC) employing a hydroxide ion-conductive polymer, quaternary ammonium polysulphone, as alkaline electrolyte and nonprecious metals, chromium-decorated nickel and silver, as the catalyst for the negative and positive electrodes, respectively. In addition to the development of a high-performance alkaline polymer electrolyte particularly suitable for fuel cells, key progress has been achieved in catalyst tailoring: The surface electronic structure of nickel has been tuned to suppress selectively the surface oxidative passivation with retained activity toward hydrogen oxidation. This report of a H2–O2 PEFC completely free from noble metal catalysts in both the positive and negative electrodes represents an important advancement in the research and development of fuel cells.

read more

Citations
More filters
Journal ArticleDOI

Metal-free catalysts for oxygen reduction reaction.

TL;DR: This paper presents a probabilistic procedure for estimating the polymethine content of carbon dioxide using a straightforward two-step procedure, and shows good results in both the stationary and the liquid phase.
Journal ArticleDOI

Anion exchange membranes for alkaline fuel cells: A review

TL;DR: In this paper, the authors present a classification of anion exchange membranes for alkaline fuel cells, based on the nature and the properties of these membranes for both commercial and non-commercial applications.
Journal ArticleDOI

Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells

TL;DR: Increasing research efforts are carried out to design and develop more efficient anode electrocatalysts for DAFCs, which are attracting increasing interest as power sources for portable applications.
References
More filters
Journal ArticleDOI

Materials for fuel-cell technologies

TL;DR: Recent progress in the search and development of innovative alternative materials in the development of fuel-cell stack is summarized.
Journal ArticleDOI

A class of non-precious metal composite catalysts for fuel cells

TL;DR: The results of this study show that heteroatomic polymers can be used not only to stabilize the non-precious metal in the acidic environment of the PEFC cathode but also to generate active sites for oxygen reduction reaction.
Journal ArticleDOI

Prospects for Alkaline Anion-Exchange Membranes in Low Temperature Fuel Cells†

TL;DR: In this article, the authors introduce the radical approach of applying alkaline anion-exchange membranes (AAEMs) to meet the current challenges with regards to direct methanol fuel cells (DMFCs).
Journal ArticleDOI

Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles

TL;DR: Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification.
Related Papers (5)