scispace - formally typeset
Journal ArticleDOI

Anisotropic Superexchange Interaction and Weak Ferromagnetism

Tôru Moriya
- 01 Oct 1960 - 
- Vol. 120, Iss: 1, pp 91-98
TLDR
In this paper, the Anderson theory of superexchange was extended to include spin-orbit coupling and the antisymmetric spin coupling suggested by Dzialoshinski from purely symmetry grounds and the symmetric pseudodipolar interaction were derived.
Abstract
A theory of anisotropic superexchange interaction is developed by extending the Anderson theory of superexchange to include spin-orbit coupling. The antisymmetric spin coupling suggested by Dzialoshinski from purely symmetry grounds and the symmetric pseudodipolar interaction are derived. Their orders of magnitudes are estimated to be ($\frac{\ensuremath{\Delta}g}{g}$) and ${(\frac{\ensuremath{\Delta}g}{g})}^{2}$ times the isotropic superexchange energy, respectively. Higher order spin couplings are also discussed. As an example of antisymmetric spin coupling the case of Cu${\mathrm{Cl}}_{2}$\ifmmode\cdot\else\textperiodcentered\fi{}2${\mathrm{H}}_{2}$O is illustrated. In Cu${\mathrm{Cl}}_{2}$\ifmmode\cdot\else\textperiodcentered\fi{}2${\mathrm{H}}_{2}$O, a spin arrangement which is different from one accepted so far is proposed. This antisymmetric interaction is shown to be responsible for weak ferromagnetism in $\ensuremath{\alpha}$-${\mathrm{Fe}}_{2}$${\mathrm{O}}_{3}$, MnC${\mathrm{O}}_{3}$, and Cr${\mathrm{F}}_{3}$. The paramagnetic susceptibility perpendicular to the trigonal axis is expected to increase very sharply near the N\'eel temperature as the temperature is lowered, as was actually observed in Cr${\mathrm{F}}_{3}$.

read more

Citations
More filters
Journal ArticleDOI

Magnetization boundary conditions at a ferromagnetic interface of finite thickness.

TL;DR: The developed theory could be applied to modeling of both linear and non-linear spin waves, including exchange, dipole-exchange, magnetostatic, and retarded modes, as well as to calculations of non-uniform equilibrium micromagnetic configurations near the interface, with a direct impact on the research in magnonics and micromagnetism.
Journal ArticleDOI

Interaction of Skyrmions and Pearl Vortices in Superconductor-Chiral Ferromagnet Heterostructures

TL;DR: In this paper, the authors investigate a hybrid topological structure with magnetic skyrmions inside a chiral ferromagnet interfaced by a thin superconducting film via an insulating barrier.
Journal ArticleDOI

Composition- and temperature-driven structural transitions in Bi(1-x)Ca(x)FeO3 multiferroics: a neutron diffraction study.

TL;DR: Neutron powder diffraction and magnetization measurements of the Bi(1-x)Ca(x)FeO3 (0.05 ≤ x ≤ 0.14) compounds were carried out to follow the effect of the heterovalent A-site doping on the long-range structure and magnetic properties of the biotech multiferroic.
Related Papers (5)