scispace - formally typeset
Journal ArticleDOI

Atomic and Photonic Entanglement Generation in n Coupled Atom-Cavity Systems

Reads0
Chats0
TLDR
Based on two-photon Jaynes-Cummings Hamiltonian for the n coupled optical cavities each of them containing a single three level atom, the n-qubit and n-photonic state transfer between the corresponding atoms and cavities is investigated in this paper.
Abstract
Based on two-photon Jaynes-Cummings Hamiltonian for the n coupled optical cavities each of them containing a single three level atom, the n-qubit and n-photonic state transfer between the corresponding atoms and cavities is investigated. In fact, we consider that the cavities are located at the nodes (vertices) of the complete network (graph) K n at which all of the nodes are connected, so that the cavities are interact with each other (via two photon exchange) completely. Then, quantum state transfer, photon transition between cavities and entanglement generations between n atoms are discussed. More clearly, by employing the consistency of number of photons and atomic excitations (the symmetry of Hamiltonian), the hamiltonian of the system is reduced from 3 n dimensional space into 2n dimensional one. Moreover, by introducing suitable basis for the atom-cavity state space based on Fourier transform, the reduced Hamiltonian is block-diagonalized, with 2 dimensional blocks. Then, the initial state of the system is evolved under the corresponding Hamiltonian and the suitable times T at which the initially unentangled atoms, become maximally entangled, are determined in terms of the hopping strength ξ between cavities.

read more

References
More filters
Journal ArticleDOI

Entanglement of Formation of an Arbitrary State of Two Qubits

TL;DR: In this article, an explicit formula for the entanglement of formation of a pair of binary quantum objects (qubits) as a function of their density matrix was conjectured.
Journal ArticleDOI

Separability Criterion for Density Matrices.

TL;DR: It is proved that a necessary condition for separability is that a matrix, obtained by partial transposition of {rho}, has only non-negative eigenvalues.
Journal ArticleDOI

Separability of mixed states: necessary and sufficient conditions

TL;DR: In this article, necessary and sufficient conditions for the separability of mixed states were provided for 2 × 2 and 2 × 3 systems, where the positivity of the partial transposition of a state is sufficient and necessary for its separability.
Journal ArticleDOI

Quantum state transfer and entanglement distribution among distant nodes in a quantum network

TL;DR: In this paper, a scheme to utilize photons for ideal quantum transmission between atoms located at spatially separated nodes of a quantum network was proposed, which employs special laser pulses that excite an atom inside an optical cavity at the sending node so that its state is mapped into a time-symmetric photon wave packet that will enter a cavity at receiving node and be absorbed by an atom there with unit probability.
Related Papers (5)