scispace - formally typeset
Open AccessJournal ArticleDOI

Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation.

TLDR
A way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects as well as significant interconfigurational and interterm errors remain.
Abstract
Generalized gradient approximations (GGA's) seek to improve upon the accuracy of the local-spin-density (LSD) approximation in electronic-structure calculations. Perdew and Wang have developed a GGA based on real-space cutoff of the spurious long-range components of the second-order gradient expansion for the exchange-correlation hole. We have found that this density functional performs well in numerical tests for a variety of systems: (1) Total energies of 30 atoms are highly accurate. (2) Ionization energies and electron affinities are improved in a statistical sense, although significant interconfigurational and interterm errors remain. (3) Accurate atomization energies are found for seven hydrocarbon molecules, with a rms error per bond of 0.1 eV, compared with 0.7 eV for the LSD approximation and 2.4 eV for the Hartree-Fock approximation. (4) For atoms and molecules, there is a cancellation of error between density functionals for exchange and correlation, which is most striking whenever the Hartree-Fock result is furthest from experiment. (5) The surprising LSD underestimation of the lattice constants of Li and Na by 3--4 % is corrected, and the magnetic ground state of solid Fe is restored. (6) The work function, surface energy (neglecting the long-range contribution), and curvature energy of a metallic surface are all slightly reduced in comparison with LSD. Taking account of the positive long-range contribution, we find surface and curvature energies in good agreement with experimental or exact values. Finally, a way is found to visualize and understand the nonlocality of exchange and correlation, its origins, and its physical effects.

read more

Content maybe subject to copyright    Report






Citations
More filters
Journal ArticleDOI

WIEN2k: An APW+lo program for calculating the properties of solids

TL;DR: The WIEN2k program is based on the augmented plane wave plus local orbitals (APW+lo) method to solve the Kohn-Sham equations of density functional theory, and the various options, properties, and available approximations for the exchange-correlation functional are mentioned.
Journal ArticleDOI

Orbital-dependent density functionals: Theory and applications

TL;DR: In this article, the authors provide a perspective on the use of orbital-dependent functionals, which is currently considered one of the most promising avenues in modern density-functional theory.
Journal ArticleDOI

Alloy catalysts designed from first principles

TL;DR: Density functional theory calculations are used to introduce a new class of near-surface alloys that can yield superior catalytic behaviour for hydrogen-related reactions and may permit these alloys to serve as low-temperature, highly selective catalysts for pharmaceuticals production and as robust fuel-cell anodes.
Journal ArticleDOI

Steam Reforming and Graphite Formation on Ni Catalysts

TL;DR: Based on density functional theory calculations, kinetic measurements, microkinetic and Monte Carlo simulations, thermogravimetric analysis (TGA) experiments, extended X-ray absorption spectroscopy (EXAFS) measurements, and experimental results from the literature, this paper presented a detailed and comprehensive mechanistic picture of the steam reforming process on a Ni catalyst.
Journal ArticleDOI

Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment

TL;DR: In this article, an empirical formula consisting of an R−6 term is introduced, which is appropriately damped for short distances; the corresponding C6 coefficient, calculated from experimental atomic polarizabilities, can be consistently added to the total energy expression.
Related Papers (5)