scispace - formally typeset
Journal ArticleDOI

Carbon-nutrient stoichiometry to increase soil carbon sequestration

Reads0
Chats0
TLDR
In this paper, the effect of N, P and S availability on the net humification efficiency (NHE) following incubation of soil with wheaten straw was investigated, showing that inorganic nutrient availability is critical to sequester C into the more stable FF-SOM pool irrespective of soil type and C input.
Abstract
The more stable fine fraction pool of soil organic matter (FF-SOM; <0.4 mm) has more nitrogen, phosphorus and sulphur (N, P, S) per unit of carbon (C) than the plant material from which it originates and has near constant ratios of C:N:P:S. Consequently, we hypothesised that the sequestration of C-rich crop residue material into the FF-SOM pool could be improved by adding supplementary nutrients to the residues based on these ratios. Here we report on the effect of N, P and S availability on the net humification efficiency (NHE), the change in the size of the FF-SOM pool (as estimated by fine fraction C (FF-C)), following incubation of soil with wheaten straw. Four diverse soils were subjected to seven consecutive incubation cycles, with wheaten straw (10 t ha equivalent) added at the beginning of each cycle, with and without inorganic N, P, S addition (5 kg N, 2 kg P and 1.3 kg S per tonne of straw). This nutrient addition doubled the mean NHE in all soils (from 7% to 15%) and when applied at twice the rate increased NHE further (up to 29%) for the two soils that received this treatment. The FF-N, -P and -S levels increased in concert with FF-C levels in all soils in close agreement with published stoichiometric ratios (C:N:P:S = 10,000:833:200:143). Microbial biomass-C (MB-C) levels were estimated during one incubation cycle and found to increase in parallel with FF-C from 448 μg MB-C g soil (no nutrient addition) to 727 μg MB-C g soil (plus nutrients) and 947 μg MB-C g soil (plus 2× nutrients). There was a significant relationship between MB-C and the change in FF-C during that incubation cycle, providing evidence of a close relationship between the microbial biomass and FF-SOM formation. The two to four-fold increases in NHE achieved with nutrient addition demonstrated that inorganic nutrient availability is critical to sequester C into the more stable FF-SOM pool irrespective of soil type and C input. This has important implications for strategies to build soil fertility or mitigate climate change via increased soil organic C, as the availability and value of these nutrients must be considered.

read more

Citations
More filters
Journal ArticleDOI

Fate of straw- and root-derived carbon in a Swedish agricultural soil

TL;DR: In this paper, the effect of 16 years of C3 straw and C4 root input, with and without nitrogen (N) addition, on SOC stocks and C distribution in soil fractions in the long-term frame trial at Ultuna, Sweden.
Journal ArticleDOI

Stoichiometric controls upon low molecular weight carbon decomposition

TL;DR: In this paper, a 14C labelled low molecular weight substrate (glucose) was added to a sandy soil along with eleven increasing levels of N, phosphorus (P), and sulphur (S) in relative proportions as required for microbial biomass production.
Journal ArticleDOI

High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration

TL;DR: Vetch–sorghum rotation with high N mineralization rates and diverse microbial community sequestered more C and N in stable soil organic matter fractions than no-till sorghum alone or with rye, which had lower N turnover rates.
Journal ArticleDOI

Nitrogen and rice straw incorporation impact nitrogen use efficiency, soil nitrogen pools and enzyme activity in rice-wheat system in north-western India

TL;DR: In this paper, the authors investigated the long-term impacts of four rates of rice straw incorporation (0, 50, 75 and 100 Mg ha−1 year-1; RS0, RS50, RS75 and RS100) and four rate of fertilizer-N application in different combinations on N dynamics in soils, enzyme activity, crop yields and NUE.
Journal ArticleDOI

Microbial energy and matter transformation in agricultural soils

TL;DR: In this article, the authors focus on how the bioavailability of organic carbon (C) and energy influence the ecology and functioning of microorganisms in agricultural soils, and argue that efforts to restore stabilised, sequestered organic carbon stocks and improve ecosystem services in agricultural systems should be directed toward the manipulation of the microbial community composition and function to favour species associated with reduced rates of SOC loss.
References
More filters
Journal ArticleDOI

An extraction method for measuring soil microbial biomass c

TL;DR: In this paper, the effects of fumigation on organic C extractable by 0.5 m K2SO4 were examined in a contrasting range of soils and it was shown that both ATP and organic C rendered decomposable by CHCl3 came from the soil microbial biomass.
Book

HUmus Chemistry Genesis, Composition, Reactions

TL;DR: In this paper, the authors present an analysis of organic matter in soil using NMR Spectroscopy and analytical pyrolysis, showing that organic matter is composed of nitrogen and ammonium.
BookDOI

Soil Sampling and Methods of Analysis

TL;DR: In this paper, the authors present a set of methods for soil sampling and analysis, such as: N.H.Hendershot, H.M.Hettiarachchi, C.C.De Freitas Arbuscular Mycorrhiza, Y.K.Soon and W.J.
Related Papers (5)