scispace - formally typeset
Journal ArticleDOI

Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films

TLDR
In this article, the authors investigated carrier transport in a crystalline oxide semiconductor InGaO3(ZnO)5 using single-crystalline thin films and showed that when carrier concentration is less than 2×1018cm−3, logarithm of electrical conductivity decreases in proportion to T−1∕4 and room-temperature Hall mobility was as low as ∼1cm2(Vs)−1.
Abstract
We have investigated carrier transport in a crystalline oxide semiconductor InGaO3(ZnO)5 using single-crystalline thin films. When carrier concentration is less than 2×1018cm−3, logarithm of electrical conductivity decreases in proportion to T−1∕4 and room-temperature Hall mobility was as low as ∼1cm2(Vs)−1. When carrier concentration was increased to 4×1018cm−3, the conduction mechanism changed to degenerate conduction and room-temperature Hall mobility was steeply increased to >10cm2(Vs)−1, showing metal–insulator transition behavior. These results are explained by percolation conduction over distribution of potential barriers formed around conduction band edge. The potential distribution is a consequence of potential modulation originating from random distribution of Ga3+ and Zn2+ ions in the crystal structure of InGaO3(ZnO)5.

read more

Citations
More filters
Journal ArticleDOI

Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors

TL;DR: A novel semiconducting material is proposed—namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)—for the active channel in transparent thin-film transistors (TTFTs), which are fabricated on polyethylene terephthalate sheets and exhibit saturation mobilities and device characteristics are stable during repetitive bending of the TTFT sheet.
Journal ArticleDOI

Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors

TL;DR: In this paper, a-IGZO is used as the channel layer for flexible and transparent TFTs. But, the performance of the flexible TFT was evaluated at room temperature and at temperatures up to 500 °C.
Journal ArticleDOI

Present status of amorphous In–Ga–Zn–O thin-film transistors

TL;DR: Most device issues, such as uniformity, long-term stability against bias stress and TFT performance, are solved for a-IGZO TFTs.
Patent

Semiconductor device, and manufacturing method thereof

TL;DR: In this article, the oxide semiconductor film has at least a crystallized region in a channel region, which is defined as a region of interest (ROI) for a semiconductor device.
Patent

Semiconductor device and display device

TL;DR: In this paper, a connection terminal portion is provided with a plurality of connection pads which are part of the connection terminal, each of which includes a first connection pad and a second connection pad having a line width different from that of the first one.
References
More filters
Book

Electronic processes in non-crystalline materials

TL;DR: The Fermi Glass and the Anderson Transition as discussed by the authorsermi glass and Anderson transition have been studied in the context of non-crystalline Semiconductors, such as tetrahedrally-bonded semiconductors.
Journal ArticleDOI

Thin-Film Transistor Fabricated in Single-Crystalline Transparent Oxide Semiconductor

TL;DR: The fabrication of transparent field-effect transistors using a single-crystalline thin-film transparent oxide semiconductor, InGaO3(ZnO)5, as an electron channel and amorphous hafnium oxide as a gate insulator provides a step toward the realization of transparent electronics for next-generation optoelectronics.

Electronic properties of doped semiconductors

TL;DR: In the last fifteen years, there has been a noticeable shift towards impure semiconductors -a shift which came about because it is precisely the impurities that are essential to a number of major semiconductor devices.
Journal ArticleDOI

Resonant tunneling in semiconductor double barriers

TL;DR: In this article, a double-barrier structure with a thin GaAs sandwiched between two GaAlas barriers has been shown to have resonance in the tunneling current at voltages near the quasistationary states of the potential well.
Book

Physics of amorphous materials

TL;DR: In this paper, the glass transition theories for glass transition factors that determine the glass-transition temperature glass-forming systems and ease of glass formation are discussed. But they do not consider the effects of defects.
Related Papers (5)