scispace - formally typeset
Journal ArticleDOI

Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells

TLDR
In this paper, the perovskite diode becomes polarised, providing a beneficial field, allowing accumulation of positive and negative space charge near the contacts, which enables more efficient charge extraction.
Abstract
High-efficiency perovskite solar cells typically employ an organic–inorganic metal halide perovskite material as light absorber and charge transporter, sandwiched between a p-type electron-blocking organic hole-transporting layer and an n-type hole-blocking electron collection titania compact layer. Some device configurations also include a thin mesoporous layer of TiO2 or Al2O3 which is infiltrated and capped with the perovskite absorber. Herein, we demonstrate that it is possible to fabricate planar and mesoporous perovskite solar cells devoid of an electron selective hole-blocking titania compact layer, which momentarily exhibit power conversion efficiencies (PCEs) of over 13%. This performance is however not sustained and is related to the previously observed anomalous hysteresis in perovskite solar cells. The “compact layer-free” meso-superstructured perovskite devices yield a stabilised PCE of only 2.7% while the compact layer-free planar heterojunction devices display no measurable steady state power output when devoid of an electron selective contact. In contrast, devices including the titania compact layer exhibit stabilised efficiency close to that derived from the current voltage measurements. We propose that under forward bias the perovskite diode becomes polarised, providing a beneficial field, allowing accumulation of positive and negative space charge near the contacts, which enables more efficient charge extraction. This provides the required built-in potential and selective charge extraction at each contact to temporarily enable efficient operation of the perovskite solar cells even in the absence of charge selective n- and p-type contact layers. The polarisation of the material is consistent with long range migration and accumulation of ionic species within the perovskite to the regions near the contacts. When the external field is reduced under working conditions, the ions can slowly diffuse away from the contacts redistributing throughout the film, reducing the field asymmetry and the effectiveness of the operation of the solar cells. We note that in light of recent publications showing high efficiency in devices devoid of charge selective contacts, this work reaffirms the absolute necessity to measure and report the stabilised power output under load when characterizing perovskite solar cells.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metal-halide perovskites for photovoltaic and light-emitting devices

TL;DR: The broad tunability and fabrication methods of these materials, the current understanding of the operation of state-of-the-art solar cells and the properties that have delivered light-emitting diodes and lasers are described.
Journal ArticleDOI

Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

TL;DR: A solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers is reported.
Journal ArticleDOI

Halide Perovskite Photovoltaics: Background, Status, and Future Prospects

TL;DR: The fundamentals, recent research progress, present status, and views on future prospects of perovskite-based photovoltaics, with discussions focused on strategies to improve both intrinsic and extrinsic (environmental) stabilities of high-efficiency devices are described.
Journal ArticleDOI

Inorganic caesium lead iodide perovskite solar cells

TL;DR: In this paper, the authors showed that the organic cation is not essential, but simply a convenience for forming lead triiodide perovskites with good photovoltaic properties.
Journal ArticleDOI

Ion Migration in Organometal Trihalide Perovskite and Its Impact on Photovoltaic Efficiency and Stability

TL;DR: This Account critically review the recent progress in understanding the fundamental science on ion migration in OTP based solar cells and raises some questions that need to be understood and addressed in the future.
References
More filters
Book ChapterDOI

I and J

Journal ArticleDOI

A and V.

Journal ArticleDOI

Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells

TL;DR: Two organolead halide perovskite nanocrystals were found to efficiently sensitize TiO(2) for visible-light conversion in photoelectrochemical cells, which exhibit strong band-gap absorptions as semiconductors.
Journal Article

A. and Q

Related Papers (5)