scispace - formally typeset
Open AccessJournal ArticleDOI

Claudin-based tight junctions are crucial for the mammalian epidermal barrier a lesson from claudin-1–deficient mice

Reads0
Chats0
TLDR
Findings provide the first evidence that continuous claudin-based TJs occur in the epidermis and that these TJs are crucial for the barrier function of the mammalian skin.
Abstract
The tight junction (TJ) and its adhesion molecules, claudins, are responsible for the barrier function of simple epithelia, but TJs have not been thought to play an important role in the barrier function of mammalian stratified epithelia, including the epidermis. Here we generated claudin-1–deficient mice and found that the animals died within 1 d of birth with wrinkled skin. Dehydration assay and transepidermal water loss measurements revealed that in these mice the epidermal barrier was severely affected, although the layered organization of keratinocytes appeared to be normal. These unexpected findings prompted us to reexamine TJs in the epidermis of wild-type mice. Close inspection by immunofluorescence microscopy with an antioccludin monoclonal antibody, a TJ-specific marker, identified continuous TJs in the stratum granulosum, where claudin-1 and -4 were concentrated. The occurrence of TJs was also confirmed by ultrathin section EM. In claudin-1–deficient mice, claudin-1 appeared to have simply been removed from these TJs, leaving occludin-positive (and also claudin-4–positive) TJs. Interestingly, in the wild-type epidermis these occludin-positive TJs efficiently prevented the diffusion of subcutaneously injected tracer (∼600 D) toward the skin surface, whereas in the claudin-1–deficient epidermis the tracer appeared to pass through these TJs. These findings provide the first evidence that continuous claudin-based TJs occur in the epidermis and that these TJs are crucial for the barrier function of the mammalian skin.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The Blood–Brain Barrier

TL;DR: Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease.
Journal ArticleDOI

Size-selective loosening of the blood-brain barrier in claudin-5–deficient mice

TL;DR: In claudin-5–deficient mice, the size-selective loosening of the blood-brain barrier was selectively affected, which provides new insight into the basic molecular physiology of BBB and opens a new way to deliver potential drugs across the BBB into the central nervous system.
Journal ArticleDOI

The skin: an indispensable barrier

TL;DR: Changes in epidermal differentiation and lipid composition lead to a disturbed skin barrier, which allows the entry of environmental allergens, immunological reaction and inflammation in atopic dermatitis.
Journal ArticleDOI

The tight junction: a multifunctional complex.

TL;DR: A group of integral membrane proteins-occludin, claudins, and junction adhesion molecules-interact with an increasingly complex array of tight junction plaque proteins not only to regulate paracellular solute and water flux but also to integrate such diverse processes as gene transcription, tumor suppression, cell proliferation, and cell polarity.
Journal ArticleDOI

Intestinal barrier function: molecular regulation and disease pathogenesis.

TL;DR: Clinical and experimental evidence demonstrating intestinal epithelial barrier dysfunction as a major factor contributing to the predisposition to inflammatory diseases, including food allergy, inflammatory bowel diseases, and celiac disease is summarized.
References
More filters
Journal ArticleDOI

Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction

TL;DR: A new method of total RNA isolation by a single extraction with an acid guanidinium thiocyanate-phenol-chloroform mixture is described, providing a pure preparation of undegraded RNA in high yield and can be completed within 4 h.
Journal ArticleDOI

Junctional complexes in various epithelia

TL;DR: The tight junction is impervious to concentrated protein solutions and appears to function as a diffusion barrier or "seal," and the desmosome and probably also the zonula adhaerens may represent intercellular attachment devices.
Journal ArticleDOI

Occludin: a novel integral membrane protein localizing at tight junctions.

TL;DR: An integral membrane protein localizing at tight junctions is now identified, which is designated as "occludin," which was revealed by a hydrophilicity plot that was very similar to that of connexin, an integral membraneprotein in gap junctions.
Journal ArticleDOI

Multifunctional strands in tight junctions.

TL;DR: New insights into the molecular architecture of tight junctions allow us to now discuss the structure and functions of this unique cell–cell adhesion apparatus in molecular terms.
Journal ArticleDOI

Claudin-1 and -2: Novel Integral Membrane Proteins Localizing at Tight Junctions with No Sequence Similarity to Occludin

TL;DR: It is indicated that multiple integral membrane proteins with four putative transmembrane domains, occludin and claudins, constitute TJ strands.
Related Papers (5)