scispace - formally typeset
Journal ArticleDOI

Combining In Situ Synchrotron X‐Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium‐Ion Batteries

Reads0
Chats0
TLDR
In this paper, the structural changes in overcharged LixNi0.8Co0.15Al0.05O2 and lixNiNi1/3Co 1/3Mn 1 /3O2 cathode materials were investigated using time-resolved X-ray diffraction, X-Ray absorption, mass spectroscopy, and high-resolution transmission electron microscopy during heating.
Abstract
The thermal instability of the cathode materials in lithium-ion batteries is an important safety issue, requiring the incorporation of several approaches to prevent thermal runaway and combustion. Systematic studies, using combined well-defined in situ techniques, are crucial to obtaining in-depth understanding of the structural origin of this thermal instability in overcharged cathode materials. Here time-resolved X-ray diffraction, X-ray absorption, mass spectroscopy, and high-resolution transmission electron microscopy during heating are combined to detail the structural changes in overcharged LixNi0.8Co0.15Al0.05O2 and LixNi1/3Co1/3Mn1/3O2 cathode materials. By employing these several techniques in concert, various aspects of the structural changes are investigated in these two materials at an overcharged state; these include differences in phase-distribution after overcharge, phase nucleation and propagation during heating, the preferred atomic sites and migration paths of Ni, Co, and Mn, and their individual contributions to thermal stability, together with measuring the oxygen release that accompanies these structural changes. These results provide valuable guidance for developing new cathode materials with improved safety characteristics.

read more

Citations
More filters
Journal ArticleDOI

Nickel‐Rich Layered Lithium Transition‐Metal Oxide for High‐Energy Lithium‐Ion Batteries

TL;DR: The performance enhancement of Ni-rich cathode materials through structure tuning or interface engineering is summarized and the underlying mechanisms and remaining challenges will also be discussed.
Journal ArticleDOI

Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.

TL;DR: This review summarizes the current trends and provides guidelines towards achieving next-generation rechargeable Li and Li-ion batteries with higher energy densities, better safety characteristics, lower cost and longer cycle life by addressing batteries using high-voltage cathodes, metal fluoride electrodes, chalcogen electrodes, Li metal anodes, high-capacity anodes as well as useful electrolyte solutions.
Journal ArticleDOI

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries

TL;DR: It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels, and the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix.
Journal ArticleDOI

Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries

TL;DR: In this paper, the surface lattice structures of LiNi0.5Co0.2Mn0.3O2 were investigated under various cutoff voltage conditions, and it was shown that the pristine rhombohedral phase tends to transform into a mixture of spinel and rock salt phases.
Journal ArticleDOI

High-voltage positive electrode materials for lithium-ion batteries

TL;DR: This review gives an account of the various emerging high-voltage positive electrode materials that have the potential to satisfy the requirements of lithium-ion batteries either in the short or long term, including nickel-rich layered oxides, lithium- rich layeredOxides, high- voltage spinel oxide compounds, and high- voltage polyanionic compounds.
References
More filters
Journal ArticleDOI

Issues and challenges facing rechargeable lithium batteries

TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Journal ArticleDOI

ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.

TL;DR: A software package for the analysis of X-ray absorption spectroscopy (XAS) data is presented, based on the IFEFFIT library of numerical and XAS algorithms and is written in the Perl programming language using the Perl/Tk graphics toolkit.
Journal ArticleDOI

Challenges for Rechargeable Li Batteries

TL;DR: In this paper, the authors reviewed the challenges for further development of Li rechargeable batteries for electric vehicles and proposed a nonflammable electrolyte with either a larger window between its lowest unoccupied molecular orbital and highest occupied molecular orbital (HOMO) or a constituent that can develop rapidly a solid/ electrolyte-interface (SEI) layer to prevent plating of Li on a carbon anode during a fast charge of the battery.
Journal ArticleDOI

Lithium batteries: Status, prospects and future

TL;DR: In this article, the authors present the present status of lithium battery technology, then focus on its near future development and finally examine important new directions aimed at achieving quantum jumps in energy and power content.
Journal ArticleDOI

Theoretical approaches to x-ray absorption fine structure

TL;DR: In this paper, the authors focus on extended x-ray absorption fine structure (EXAFS) well above an X-ray edge, and, to a lesser extent, on xray absorption near-edge structure (XANES) closer to an edge.
Related Papers (5)