scispace - formally typeset
Journal ArticleDOI

Compressive Fresnel Holography

TLDR
This work demonstrates successful application of compressive sensing framework to digital Fresnel holography and it is shown that when applying compressed sensing approach to Fresnel fields a special sampling scheme should be adopted for improved results.
Abstract
Compressive sensing is a relatively new measurement paradigm which seeks to capture the “essential” aspects of a high-dimensional object using as few measurements as possible. In this work we demonstrate successful application of compressive sensing framework to digital Fresnel holography. It is shown that when applying compressive sensing approach to Fresnel fields a special sampling scheme should be adopted for improved results.

read more

Citations
More filters
Journal ArticleDOI

4D compressive sensing holographic imaging of small moving objects with multiple illuminations.

TL;DR: Further details on the reconstruction technique are given and a more robust version of the algorithm based on multiple illuminations is presented, which is able to determine the 3D positions of small objects moving within a larger motionless object.
Journal ArticleDOI

Influence of sparse constraint functions on compressive holographic tomography.

TL;DR: This paper quantified and analyzed the impact of the l1 norm and total variation (TV) norm sparse constraints on the reconstruction quality under different interlayer spacings, sampling rates, and signal-to-noise ratios and recommended the use of axial resolution of the digital holography system as the interlayer spacing.

Compressed Optical Imaging

TL;DR: In this article, the authors present a generalized sampling theory for image interpolation and image reconstruction in the context of compressed sensing and digital holography, and present the results of a case study at EPFL.
Dissertation

Development of sparse coding and reconstruction subsystems for astronomical imaging

TL;DR: Tese de mestrado integrado Engenharia Fisica, Universidade de Lisboa, Faculdade de Ciencias, 2019
Proceedings ArticleDOI

Compressive sensing with variable density sampling for 3D imaging

Abstract: Compressive Sensing (CS) can alleviate the sensing effort involved in the acquisition of three dimensional image (3D) data. The most common CS sampling schemes employ uniformly random sampling because it is universal, thus it is applicable to almost any signals. However, by considering general properties of images and properties of the acquisition mechanism, it is possible to design random sampling schemes with variable density that have improved CS performance. We have introduced the concept of non-uniform CS random sampling a decade ago for holography. In this paper we overview the non-uniform CS random concept evolution and application for coherent holography, incoherent holography and for 3D LiDAR imaging.
References
More filters
Journal ArticleDOI

An Introduction To Compressive Sampling

TL;DR: The theory of compressive sampling, also known as compressed sensing or CS, is surveyed, a novel sensing/sampling paradigm that goes against the common wisdom in data acquisition.
Journal ArticleDOI

Sparsity and incoherence in compressive sampling

TL;DR: It is shown that ‘1 minimization recovers x 0 exactly when the number of measurements exceeds m Const ·µ 2 (U) ·S · logn, where S is the numberof nonzero components in x 0, and µ is the largest entry in U properly normalized: µ(U) = p n · maxk,j |Uk,j|.
Journal ArticleDOI

Phase-shifting digital holography

TL;DR: A new method is proposed in which the distribution of complex amplitude at a plane is measured by phase-shifting interferometry and then Fresnel transformed by a digital computer, which can reconstruct an arbitrary cross section of a three-dimensional object with higher image quality and a wider viewing angle than from conventional digital holography using an off-axis configuration.
Journal ArticleDOI

Digital holography for quantitative phase-contrast imaging.

TL;DR: A new application of digital holography for phase-contrast imaging and optical metrology and an application to surface profilometry shows excellent agreement with contact-stylus probe measurements.
Journal ArticleDOI

Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence.

TL;DR: A digital holographic technique is implemented in a microscope for three-dimensional imaging reconstruction using a Mach-Zehnder interferometer that uses an incoherent light source to remove the coherent noise that is inherent in the laser sources.
Related Papers (5)