scispace - formally typeset
Journal ArticleDOI

Conducting polymer gas sensors

Jan J. Miasik, +2 more
- 01 Jan 1986 - 
- Vol. 82, Iss: 4, pp 1117-1126
Reads0
Chats0
TLDR
In this paper, solid-state semiconductor gas sensors based on organic sensor elements are reviewed and compared to metal-oxide devices in their sensitivity to toxic gases and their ability to operate at or near room temperature.
Abstract
Recent results with solid-state semiconductor gas sensors based on organic sensor elements are reviewed. Devices based on metal phthalocyanines show useful responses to NO2. Lead phthalocyanine combines the highest conductivity with the maximum sensitivity to NO2. A thin-film lead phthalocyanine sensor has successfully been used to monitor NOx produced by shot-firing in coal mines. To obtain reasonable conductance and speed of response and recovery, phthalocyanine sensors have been operated at 170°C. Conducting polymer materials, and particularly chemically doped polypyrrole, show responses to toxic gases at ambient temperature. Initial work, using polypyrrole black impregnated filter paper, showed a response to ammonia. More recently, using polypyrrole films electrochemically deposited over electrode arrays, responses to nitrogen dioxide and hydrogen sulphide have also been obtained. Organic-semiconductor gas sensors may have advantages compared to metal-oxide devices in their sensitivity to toxic gases and in their ability to operate at or near room temperature. However, the mechanisms of device function are not yet well understood.

read more

Citations
More filters
Journal ArticleDOI

Nanotube molecular wires as chemical sensors

TL;DR: The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Journal ArticleDOI

Nanostructured Materials for Room-Temperature Gas Sensors

TL;DR: The most important advances with regard to fundamental research, sensing mechanisms, and application of nanostructured materials for room-temperature conductometric sensor devices are reviewed here and particular emphasis is given to the relation between the nanostructure and sensor properties in an attempt to address structure-property correlations.
Journal ArticleDOI

A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment

TL;DR: A comprehensive review about the most recent progress in synthesis, characterization, fundamental understanding, and performance of graphene and graphene oxide sponges can be found in this paper, where the technical challenges are discussed, and several future research directions are also suggested.
Journal ArticleDOI

Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing

TL;DR: An extensive review of carbon nanomaterials in electronic, optoelectronic, photovoltaic, and sensing devices with a particular focus on the latest examples based on the highest purity samples is presented.
Journal ArticleDOI

Miniaturized gas ionization sensors using carbon nanotubes

TL;DR: The fabrication and successful testing of ionization microsensors featuring the electrical breakdown of a range of gases and gas mixtures at carbon nanotube tips are reported, enabling compact, battery-powered and safe operation of such sensors.