scispace - formally typeset
Journal ArticleDOI

Nanotube molecular wires as chemical sensors

TLDR
The nanotubes sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature and the mechanisms of molecular sensing with nanotube molecular wires are investigated.
Abstract
Chemical sensors based on individual single-walled carbon nanotubes (SWNTs) are demonstrated. Upon exposure to gaseous molecules such as NO 2 or NH 3 , the electrical resistance of a semiconducting SWNT is found to dramatically increase or decrease. This serves as the basis for nanotube molecular sensors. The nanotube sensors exhibit a fast response and a substantially higher sensitivity than that of existing solid-state sensors at room temperature. Sensor reversibility is achieved by slow recovery under ambient conditions or by heating to high temperatures. The interactions between molecular species and SWNTs and the mechanisms of molecular sensing with nanotube molecular wires are investigated.

read more

Citations
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

Carbon Nanotubes--the Route Toward Applications

TL;DR: Many potential applications have been proposed for carbon nanotubes, including conductive and high-strength composites; energy storage and energy conversion devices; sensors; field emission displays and radiation sources; hydrogen storage media; and nanometer-sized semiconductor devices, probes, and interconnects.
Journal ArticleDOI

Detection of individual gas molecules adsorbed on graphene

TL;DR: In this paper, it was shown that micrometre-size sensors made from graphene are capable of detecting individual events when a gas molecule attaches to or detaches from graphene's surface.
Journal ArticleDOI

Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species

TL;DR: The small size and capability of these semiconductor nanowires for sensitive, label-free, real-time detection of a wide range of chemical and biological species could be exploited in array-based screening and in vivo diagnostics.
Journal ArticleDOI

Cancer nanotechnology: opportunities and challenges.

TL;DR: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry that can provide essential breakthroughs in the fight against cancer.
References
More filters
Journal ArticleDOI

Room-temperature transistor based on a single carbon nanotube

TL;DR: In this paper, the fabrication of a three-terminal switching device at the level of a single molecule represents an important step towards molecular electronics and has attracted much interest, particularly because it could lead to new miniaturization strategies in the electronics and computer industry.
Book

Science of fullerenes and carbon nanotubes

TL;DR: In this paper, the authors present a detailed overview of the properties of Fullerenes and their properties in surface science applications, such as scanning tunnel microscopy, growth and fragmentation studies, and chemical synthesis.
Journal ArticleDOI

A Carbon Nanotube Field-Emission Electron Source

TL;DR: In this paper, a high-intensity electron gun based on field emission from a film of aligned carbon nanotubes has been made, which consists of a nanotube film with a 1-millimeter-diameter grid about 20 micrometers above it.
Journal ArticleDOI

Single- and multi-wall carbon nanotube field-effect transistors

TL;DR: In this article, the authors fabricated field effect transistors based on individual single and multi-wall carbon nanotubes and analyzed their performance, showing that structural deformations can make them operate as field-effect transistors.
Journal ArticleDOI

Carbon Nanotube Actuators

TL;DR: Predictions based on measurements suggest that actuators using optimized nanotube sheets may eventually provide substantially higher work densities per cycle than any previously known technology.
Related Papers (5)