scispace - formally typeset
Open AccessJournal ArticleDOI

Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm

Reads0
Chats0
TLDR
Advanced materials and devices are reported that enable high-efficiency mechanical-to-electrical energy conversion from the natural contractile and relaxation motions of the heart, lung, and diaphragm, demonstrated in several different animal models, each of which has organs with sizes that approach human scales.
Abstract
Here, we report advanced materials and devices that enable high-efficiency mechanical-to-electrical energy conversion from the natural contractile and relaxation motions of the heart, lung, and diaphragm, demonstrated in several different animal models, each of which has organs with sizes that approach human scales. A cointegrated collection of such energy-harvesting elements with rectifiers and microbatteries provides an entire flexible system, capable of viable integration with the beating heart via medical sutures and operation with efficiencies of ∼2%. Additional experiments, computational models, and results in multilayer configurations capture the key behaviors, illuminate essential design aspects, and offer sufficient power outputs for operation of pacemakers, with or without battery assist.

read more

Citations
More filters
Book ChapterDOI

Approaches to the Development of Implantable Therapeutic Systems

TL;DR: This chapter comprises discussion on various implantable systems including the marketed ones and their applications in drug delivery.
Dissertation

Nonlinear vibration energy harvesting : fundamental limits, robustness issues, and practical approaches

TL;DR: A general framework and model hierarchy for the derivation of fundamental limits of the nonlinear energy harvesting rate based on Euler-Lagrangian variational approach is developed and an almost-universal strategy termed buy-low-sell-high (BLSH) is presented to maximize the harvested energy for a wide range of set-ups and excitation statistics.
Patent

Coiled and twisted nanofiber yarns for electrochemically harvesting electrical energy from mechanical deformation

TL;DR: In this article, a yarn energy harvester was used to harvest wave energy, combined with thermally-driven artificial muscles to convert temperature fluctuations to electrical energy, sewn into textiles for use as self-powered respiration sensors, and used to power a light emitting diode and to charge a storage capacitor.
Journal ArticleDOI

Fabrication and characterization of PU/NKLNT/CFs based lead-free piezoelectric composite for energy harvesting application

TL;DR: For vibration energy harvesting applications, a flexible composite material based on a polyurethane (PU) polymer matrix filled with polycrystalline particles (Na0.535K0.48)0.966 Li0.058 Nb0.1O...
References
More filters
Journal ArticleDOI

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

TL;DR: This approach has the potential of converting mechanical, vibrational, and/or hydraulic energy into electricity for powering nanodevices.
Journal ArticleDOI

Human-powered wearable computing

TL;DR: This paper explores the possibility of harnessing the energy expended during the user's everyday actions to generate power for his or her computer, thus eliminating the impediment of batteries.
Journal ArticleDOI

1.6 V Nanogenerator for Mechanical Energy Harvesting Using PZT Nanofibers

TL;DR: A piezoelectric nanogenerator based on PZT nanofibers, with a diameter and length of approximately 60 nm and 500 microm, was reported, aligned on interdigitated electrodes of platinum fine wires and packaged using a soft polymer on a silicon substrate.
Journal ArticleDOI

Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array

TL;DR: A simple and effective approach, named scalable sweeping-printing-method, for fabricating flexible high-output nanogenerator (HONG) that can effectively harvesting mechanical energy for driving a small commercial electronic component is reported.
Journal ArticleDOI

Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates.

TL;DR: The results show that a nanogenerator can be used to power flexible displays by means of mechanical agitations for future touchable display technologies.
Related Papers (5)