scispace - formally typeset
Open AccessJournal ArticleDOI

COVID-19 Does Not Lead to a "Typical" Acute Respiratory Distress Syndrome.

Reads0
Chats0
TLDR
It is found that hypercapnia was common in patients with COVID-19–associated ARDS while using low VT ventilation, and low VT may not be the best approach for all patients with ARDS, particularly those with a less severe decrease in respiratory system compliance and inadequacy of ventilation.
Abstract
ventilation strategy was applied to the first four patients to increase pulmonary efficiency to eliminate CO2, and this was used in the next four patients. Gas exchange consists of oxygenation and ventilation. Oxygenation is quantified by the PaO2/FIO2 ratio, and this method has gained wide acceptance, particularly since publication of the Berlin definition of ARDS (7). However, the Berlin definition does not include additional pathophysiological information about ARDS, such as alveolar ventilation, as measured by pulmonary dead space, which is an important predictor of outcome (8). Increased pulmonary dead space reflects the inefficiency of the lungs to eliminate CO2, which may lead to hypercapnia. In our patients with ARDS with COVID-19, hypercapnia was common at ICU admission with low VT ventilation. Assuming the anatomic portion of dead space is constant, increasing VT with constant respiratory rate would effectively increase alveolar ventilation. Any such increase in VT would decrease PaCO2, which would be captured by VR (6). VR, a novel method to monitor ventilatory adequacy at the bedside (4–6), was very high in our patients, reflecting increased pulmonary dead space and inadequacy of ventilation. With an acceptable plateau pressure and driving pressure, titration of VT was performed. PaCO2 and VR were significantly decreased when an intermediate VT (7–8 ml/kg PBW) was applied. We suggest that intermediate VT (7–8 ml/kg PBW) is recommended for such patients. Therefore, low VT may not be the best approach for all patients with ARDS, particularly those with a less severe decrease in respiratory system compliance and inadequacy of ventilation. In summary, we found that hypercapnia was common in patients with COVID-19–associated ARDS while using low VT ventilation. VR was increased in these patients, which reflected increased pulmonary dead space and inadequacy of ventilation. An intermediate VT was used to correct hypercapnia efficiently, while not excessively increasing driving pressure. Clinicians must have a high index of suspicion for increased pulmonary dead space when patients with COVID19–related ARDS present with hypercapnia. n

read more

Citations
More filters
Journal ArticleDOI

Does COVID-19 infection increase the risk of pressure injury in critically ill patients?

TL;DR: In this article , the authors performed a narrative review on the physiological evidence of increased risk in the development of pressure injury (PI) in critically ill patients with COVID-19, and found a pattern of tissue damage consistent with complement-mediated microvascular injury was found in the lungs and skin of critically ill COPD patients, suggesting sustained systemic activation of complement pathways.
Journal ArticleDOI

SARS-CoV-2 Mediated Hyperferritinemia and Cardiac Arrest: Preliminary Insights.

TL;DR: In this article, the authors reviewed clinical reports of SARS-CoV-2 patients to provide insight into a possible mechanism that allows hyperferritinemia (the presence of excess iron-binding protein) to cause cardiac dysfunction.
Journal ArticleDOI

Diagnostic and therapeutic approaches to novel covid-19 in intensive care unit: A narrative review

TL;DR: It was concluded that there is also an urgent need for further research for finding an effective medicine and vaccine for COVID-19 to prevent the occurrence of an outbreak in future and manage such public health emergency of this magnitude in both short and long terms.
Journal ArticleDOI

COVID-19-related and non-COVID-related acute respiratory distress syndrome: two sides of the same coin?

TL;DR: HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not, for teaching and research institutions in France or abroad, or from public or private research centers.
References
More filters
Journal ArticleDOI

Acute respiratory distress syndrome: the Berlin Definition.

TL;DR: The updated and revised Berlin Definition for ARDS addresses a number of the limitations of the AECC definition and may serve as a model to create more accurate, evidence-based, critical illness syndrome definitions and to better inform clinical care, research, and health services planning.
Journal ArticleDOI

Lung Recruitment in Patients with the Acute Respiratory Distress Syndrome

TL;DR: In ARDS, the percentage of potentially recruitable lung is extremely variable and is strongly associated with the response to PEEP, which may decrease ventilator-induced lung injury by keeping lung regions open that otherwise would be collapsed.
Journal ArticleDOI

Mechanical Ventilation to Minimize Progression of Lung Injury in Acute Respiratory Failure

TL;DR: It is argued that application of a lung-protective ventilation, today best applied with sedation and endotracheal intubation, might be considered a prophylactic therapy, rather than just a supportive therapy, to minimize the progression of lung injury from a form of patient self-inflicted lung injury.
Journal ArticleDOI

Prone Position in Acute Respiratory Distress Syndrome. Rationale, Indications, and Limits

TL;DR: The bulk of data indicates that in severe acute respiratory distress syndrome, carefully performed prone positioning offers an absolute survival advantage of 10-17%, making this intervention highly recommended in this specific population subset.
Journal ArticleDOI

Lung Recruitability in COVID-19-associated Acute Respiratory Distress Syndrome: A Single-Center Observational Study.

TL;DR: A new mechanics-based index is described to directly quantify the potential for lung recruitment, called the recruitment-to-inflation ratio (R/I ratio), which estimates how much of an increase in endexpiratory lung volume induced by PEEP is distributed between the recruited lung (recruitment) and the inflation and/or hyperinflation of the “baby lung” when a higher PEP is applied.
Related Papers (5)