scispace - formally typeset
Open AccessJournal ArticleDOI

Current Status of the AMOEBA Polarizable Force Field

TLDR
It is shown that the AMOEBA force field is in fact a significant improvement over fixed charge models for small molecule structural and thermodynamic observables in particular, although further fine-tuning is necessary to describe solvation free energies of drug-like small molecules, dynamical properties away from ambient conditions, and possible improvements in aromatic interactions.
Abstract
Molecular force fields have been approaching a generational transition over the past several years, moving away from well-established and well-tuned, but intrinsically limited, fixed point charge models toward more intricate and expensive polarizable models that should allow more accurate description of molecular properties. The recently introduced AMOEBA force field is a leading publicly available example of this next generation of theoretical model, but to date, it has only received relatively limited validation, which we address here. We show that the AMOEBA force field is in fact a significant improvement over fixed charge models for small molecule structural and thermodynamic observables in particular, although further fine-tuning is necessary to describe solvation free energies of drug-like small molecules, dynamical properties away from ambient conditions, and possible improvements in aromatic interactions. State of the art electronic structure calculations reveal generally very good agreement with...

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal Article

Iterative model-building, structure refinement, and density modification with the PHENIX AutoBuild Wizard

TL;DR: The highly automated PHENIX AutoBuild wizard is described, which can be applied equally well to phases derived from isomorphous/anomalous and molecular-replacement methods.
Journal ArticleDOI

Biomolecular Simulation: A Computational Microscope for Molecular Biology

TL;DR: The rapidly evolving state of the art for atomic-level biomolecular simulation is described, the types of biological discoveries that can now be made through simulation are illustrated, and challenges motivating continued innovation in this field are discussed.
Journal ArticleDOI

Fragmentation methods: a route to accurate calculations on large systems.

TL;DR: Fragmentation Methods: A Route to Accurate Calculations on Large Systems Mark S. Gordon,* Dmitri G. Fedorov, Spencer R. Pruitt, and Lyudmila V. Slipchenko.
Journal ArticleDOI

Tinker 8: Software Tools for Molecular Design.

TL;DR: The Tinker software, currently released as version 8, is a modular molecular mechanics and dynamics package written primarily in a standard, easily portable dialect of Fortran 95 with OpenMP extensions, which supports a wide variety of force fields.
Journal ArticleDOI

Polarizable Water Model for the Coarse-Grained MARTINI Force Field

TL;DR: A polarizable coarse-grained water model is parameterized such that bulk water density and oil/water partitioning data remain at the same level of accuracy as for the standard MARTINI force field, and the dielectric screening of bulk water is reproduced.
References
More filters
Journal ArticleDOI

Molecular dynamics with coupling to an external bath.

TL;DR: In this paper, a method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling, which can be easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints.
Journal ArticleDOI

Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems

TL;DR: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms.
Journal ArticleDOI

A smooth particle mesh Ewald method

TL;DR: It is demonstrated that arbitrary accuracy can be achieved, independent of system size N, at a cost that scales as N log(N), which is comparable to that of a simple truncation method of 10 A or less.
Journal ArticleDOI

Scalable molecular dynamics with NAMD

TL;DR: NAMD as discussed by the authors is a parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems that scales to hundreds of processors on high-end parallel platforms, as well as tens of processors in low-cost commodity clusters, and also runs on individual desktop and laptop computers.
Journal ArticleDOI

GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation

TL;DR: A new implementation of the molecular simulation toolkit GROMACS is presented which now both achieves extremely high performance on single processors from algorithmic optimizations and hand-coded routines and simultaneously scales very well on parallel machines.
Related Papers (5)