scispace - formally typeset
Open AccessBook

Digital Video Processing

Reads0
Chats0
TLDR
Digital Video Processing, Second Edition, reflects important advances in image processing, computer vision, and video compression, including new applications such as digital cinema, ultra-high-resolution video, and 3D video.
Abstract
Over the years, thousands of engineering students and professionals relied on Digital Video Processing as the definitive, in-depth guide to digital image and video processing technology. Now, Dr. A. Murat Tekalp has completely revamped the first edition to reflect todays technologies, techniques, algorithms, and trends. Digital Video Processing, Second Edition, reflects important advances in image processing, computer vision, and video compression, including new applications such as digital cinema, ultra-high-resolution video, and 3D video. This edition offers rigorous, comprehensive, balanced, and quantitative coverage of image filtering, motion estimation, tracking, segmentation, video filtering, and compression. Now organized and presented as a true tutorial, it contains updated problem sets and new MATLAB projects in every chapter. Coverage includes Multi-dimensional signals/systems: transforms, sampling, and lattice conversion Digital images and video: human vision, analog/digital video, and video quality Image filtering: gradient estimation, edge detection, scaling, multi-resolution representations, enhancement, de-noising, and restoration Motion estimation: image formation; motion models; differential, matching, optimization, and transform-domain methods; and 3D motion and shape estimation Video segmentation: color and motion segmentation, change detection, shot boundary detection, video matting, video tracking, and performance evaluation Multi-frame filtering: motion-compensated filtering, multi-frame standards conversion, multi-frame noise filtering, restoration, and super-resolution Image compression: lossless compression, JPEG, wavelets, and JPEG2000 Video compression: early standards, ITU-T H.264/MPEG-4 AVC, HEVC, Scalable Video Compression, and stereo/multi-view approaches

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A taxonomy and evaluation of dense two-frame stereo correspondence algorithms

TL;DR: This paper has designed a stand-alone, flexible C++ implementation that enables the evaluation of individual components and that can easily be extended to include new algorithms.
Journal ArticleDOI

Fast and robust multiframe super resolution

TL;DR: This paper proposes an alternate approach using L/sub 1/ norm minimization and robust regularization based on a bilateral prior to deal with different data and noise models and demonstrates its superiority to other super-resolution methods.
Journal ArticleDOI

Joint MAP registration and high-resolution image estimation using a sequence of undersampled images

TL;DR: A maximum a posteriori (MAP) framework for jointly estimating image registration parameters and the high-resolution image is presented and experimental results are provided to illustrate the performance of the proposed MAP algorithm using both visible and infrared images.
Journal ArticleDOI

Adaptive rood pattern search for fast block-matching motion estimation

TL;DR: The search speed of the proposed ARPS-ZMP is about two to three times faster than that of the diamond search (DS), and the method even achieves higher peak signal-to-noise ratio (PSNR) particularly for those video sequences containing large and/or complex motion contents.
Journal ArticleDOI

Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees (3-D SPIHT)

TL;DR: A low bit-rate embedded video coding scheme that utilizes a 3-D extension of the set partitioning in hierarchical trees (SPIHT) algorithm which has proved so successful in still image coding, which allows multiresolutional scalability in encoding and decoding in both time and space from one bit stream.
Related Papers (5)