scispace - formally typeset
Open AccessJournal ArticleDOI

Double‐Stranded RNA‐Specific Templated Reaction with Triplex Forming PNA

TLDR
Double‐stranded RNA‐specific templated reaction resulting from PNA‐reagent conjugates that are brought within reactive distance through the formation of sequence‐specific triplexes onto double‐Stranded RNA is reported.
Abstract
RNA, originally perceived as a simple information transfer biopolymer, is emerging as an important regulator in cellular processes. A number of non‐coding RNAs are double‐stranded and there is a need for technologies to reliably detect and image such RNAs for biological and biomedical research. Herein we report double‐stranded RNA‐specific templated reaction resulting from PNA‐reagent conjugates that are brought within reactive distance through the formation of sequence‐specific triplexes onto double‐stranded RNA. The reaction makes use of a ruthenium‐based photocatalyst that reduces a pyridinium‐based immolative linker, unmasking a profluorophore. The reaction was shown to proceed with signal amplification and to be selective for double‐stranded RNA over DNA as well as single‐stranded RNA. The generality of the triplex formation was enabled by non‐canonical nucleobases that extend the Hoogsteen base‐pairing repertoire. The technology was applied to a templated reaction using pre‐microRNA 31.

read more

Content maybe subject to copyright    Report

Article
Reference
Double-Stranded RNA-Specific Templated Reaction with Triplex
Forming PNA
KIM, Kitae, CHANG, Dalu, WINSSINGER, Nicolas
Abstract
RNA, originally perceived as a simple information transfer biopolymer, is emerging as an
important regulator in cellular processes. A number of non‐coding RNAs are double‐stranded
and there is a need for technologies to reliably detect and image such RNAs for biological and
biomedical research. Herein we report double‐stranded RNA‐specific templated reaction
resulting from PNA‐reagent conjugates that are brought within reactive distance through the
formation of sequence‐specific triplexes onto double‐stranded RNA. The reaction makes use
of a ruthenium‐based photocatalyst that reduces a pyridinium‐based immolative linker,
unmasking a profluorophore. The reaction was shown to proceed with signal amplification and
to be selective for double‐stranded RNA over DNA as well as single‐stranded RNA. The
generality of the triplex formation was enabled by non‐canonical nucleobases that extend the
Hoogsteen base‐pairing repertoire. The technology was applied to a templated reaction using
pre‐microRNA 31.
KIM, Kitae, CHANG, Dalu, WINSSINGER, Nicolas. Double-Stranded RNA-Specific Templated
Reaction with Triplex Forming PNA. Helvetica Chimica Acta, 2018, vol. 101, no. 3, p.
e1700295
DOI : 10.1002/hlca.201700295
Available at:
http://archive-ouverte.unige.ch/unige:103235
Disclaimer: layout of this document may differ from the published version.
1 / 1

1
!"#$%&'()*+,-&-./01'23&45654.7&83%+)&-./&+4)5",.95):.7*53%&;.<"*85,=.>01.
Ki#Tae#Kim,#Dalu#Chang,#and#Nicolas#Winssinger#*
,
#
Department#of#Organic#Chemistry,#NCCR#Chemical#Biology,#Faculty#of#Science,#University#of#Geneva,#30#quai#
Ernest#Ansermet,#1211#Gene va ,#S witzerland .##
#
1?(7/1@7A#RNA,#originally#perceived#as#a# simple#information#transfer#biopolymer,# is# em erging# as#an#important#
regulator# in# cellular# processes.# # A# nu m b er# of# non-coding# RNAs# are# d ouble-strande d# and# there# is# a# need# for#
technologies#to#reliably#d etect#and#image#such#RNAs#fo r#biological#and#biomedical#research.#Herein#w e#report#
double-stranded# RNA-specific# templated# reaction# resulting# from# PNA-rea gen t# con jug ates # that# are# brought#
within#reactive# distance# through#the#formation# of#sequence-specific#triplexes#onto#double -strand ed#RNA.##The#
reaction# make s# us e# of# a # ruth en ium -based# photocatalyst# that# reduces# a# pyridinium-based# imm olative# linker,#
unmasking#a#profluorophore.##The#reaction#was# shown# to# proceed#with# signal#amplification#and# to# be#selective#
for# do u ble-stranded# RNA #over# DNA#as#w ell# as# single-stranded#RNA.##Th e#generality# o f#the# triplex#formation#was#
enabled#by#non-canonical#nucleobases#that#extend#the# Ho ogsteen# b ase-pairing#repertoire.##The#technology#was#
applied#to#a#templated#reaction#using#pre-microRNA#31.#
B&C9"*-2:#Template d #re a ct io n #• #su p r amolecular#c h e mistry#•#PNA #• #d sR NA#•#miR#
#
D,)*"-# 4 )5" ,.
The#past#decades#have#brought#a#paradigm#shift#regarding#the#role#of#RNA#with#accumulating#evidence#that#its#functions#extend#far#beyond#
simple#messaging#between#DNA#and#proteins.
[1]
##Only#3#%#of#our#genome#encodes#proteins,#yet#the#work#that#emerged#from##the#
Encyclopedia#of#DNA#Elements#(ENCODE)#project
[2]
#revealed#that#76%#of#the#genom e#is#tran scrib ed ,#bolsterin g#the #notio n#th at#an #im po rtan t#
portion#of#non-coding#RNA#(ncRNA)#has#a#role.##Non-coding#RNA#(ncRNA)#genes#yield#functional#RNAs#rath er#than #pro teins,#w ith#im po rtan t#
function#in#directing#post-translatio nal#regu lation #of#gen e#exp ressio n#an d#R NA #m od ifications .#
[3]
#Double-stranded#RNA#(dsRNA)#has#emerged#
as#an#important#regulator#of#gene#expression#in#many#eukaryotes.#It#triggers#different#types#of#gene#silencing#that#are#collectively#referred#
to#as#RNA#silencing#or#RNA#interference#.
[4]
#Such#ncRNAs#are#typically#regulated#by#a#complex#set#of#modifications#and#understanding#their#
biogenesis#is#crucial.
[5,#6]
#As#a#single#strand#biopolymer,#RNA#tends#to#adopt#diverse#intermolecular#folds#with#stretches#of#dsRNA.
[7]
##
MicroRNAs#(miRs)#which,#in#their#mature#form#are#approximately#21#nt,#are#processed#from#larger#double-stranded#precursors#following#a#
choreographed#series#of#events.#
[8,#9]
#These#advances#have#transformed#our#appreciation#for#the#tremendous#number,#diversity#and#
biological#importance#of#ncRNAs.##Accordingly,#technologie s#to#se n se#a nd #in terfe re#w ith #ncR N A s#are #im po rta nt.
[10]
#Recently,#triplex-forming#
PNAs#with#a#fluorogen#as#a#base#surrogate#were#reported#as#a#turn-on#probe#for#dsRNA.#
[11,#12]
##Oligonucleotide-templated#reactions#have#
emerged#as#a#powerful#technology#to#sense#and#image#ssDNA#or#RNA.
[13-17]
#Oligonucleotide-templated#reactions#are#prom o ted#b y#the#h igh#
effective#concentration#achieved#following#hybridization#of#the#reagent#conjugates.##These#reactions#have#been#shown#to#be#possible#in#a#
cellular#context#as#well#as#live#organisms
[18]
#and#can#be#used#to#unmask#fluorophores#or#bioactive#compounds.
[19-21]
#Templated#reactions#
have#the#potential#to#turnover#and#provide#signal#amplification.##Proteins#have#also#been#used#to#template#reactions#using#the#same#
concept#of#proximity-induced#reactio ns .
[22-24]
###Herein#we#extend#this#che m ist ry#to #d sR N A#a n d#d e m o n stra te #th at#t he #rea ct ion #is#specific#to#a#
dsRNA#over#dsDNA#or#ssRNA#(Fig.#1).#
While#peptide#nucleic#acids#(PNAs)#are#known#to#form#triplex#with#DNA,
[25]
#such#triplex#formations#are#restricted#to#purine#sequences#
using#the#canonical#nucleobases#and#proceed#under#specific#conditions#(low#salt,#acidic#pH).##Recently,#Rozner#and#coworkers#extended#the#
scope#of#triplex#forming#PNA#with#the#introduction#of#monomers#bearing#novel#nucleob ases#that#extend #the#Hoogstee n#triplex#base-
pairing
[26]
#to#any#sequence#permutation #(M •G-C,#P•C-G,#E•U-A,#Fig.#1)#and#showed#that#triplex#formation#was#selective#for#dsRNA#over#
dsDNA.
[27-30]
#The#fact#that#the#M#nucleobase#is#more#basic#than#the#C#nucleobase#also#enables#triplex#formation#at#higher#pH,#at#or#near#
physiological#conditions.###

2
#
<5=#*&.EF#Top:#Schematic#representation#of#dsRNA#templated#reaction#between#Ru(bpy)
2
phen#or#pyridinium#coumarin#(PyCou)#based#on#triplex#formation#
leading#the#accumulation#of#fluoroph o re#(Fl);#Bottom :#C h emical#structures#and#Hoogsteen#hydrogen-bonding#patterns#of#modified#nucleobases#M,#P,#and#E#
designed#to#recognize#the#G-C,#C-G,#and#U-A#nucleobases,#respectively,#as#well#as#T#which#pairs#A-U#for#a#PNA-dsRNA#triplex.#
/&2#%)2.+,-.!524#225",.
Design'of'dsRNA'templated'reaction'
We#began#our#work#with#a#dsRNA#derived#from#sequences#that#have#been#productively#used#in#hybridization#chain#reaction#(HCR).
[31]
#As#
shown#in#Fig.#1;#two#PNA#probes#conjugated#to#the#ruthenium-based#photocatalyst#and#the#pyridinium-based#immolative#linker,#
respectively,#are#required.##Triplex#formation #brin gs#the #ruthen ium-based#photocatalyst#(Ru(bpy)
2
phen)#within#reactive#distance#of#the#
pyridinium-based#immolative#linker.##Photoexcitation#of#the#catalyst#using#a#455#nm#LED#lamp#followed#by#ascorbate#reduction#yields#a#
reduced#ruthenium#catalyst#that#tra nsfe rs#an #electron #to#the #pyrid iniu m #resultin g#in#a n#elim in atio n#of#th e#ben zylic #sub stituent#(immolation).##
We#opted#for#difluorocoumarin#as#the#leaving#group#based#on#the#fact#that#it#had#been#successfully#used#in#the#templated#reaction#
previously,#yielding#a#fluorogenic#signal#that#is#spectrally#resolved#from#the#ruthenium#photocatalyst.
[32]
##The#design#of#the#probes#was#
made#with#the#following#considerations:#each#probe#should#use#a#different#strand#of#the#duplex#to#minimize#any#background#reaction#
arising#from#ssRNA-templated#reaction;##sequences#rich#in#M#and#T #m on om ers #will#form #m ore #stab le#triplex;#8-mer#probes#should#achieve#
the#necessary#affinity#to#yield#a#templated#reactio n#at#low #co nce ntra tion#(less#th an 10 0#nM );#the #reage nts#sh ou ld#be#se pa rated#from#the#
PNA#with#a#short#polyethylene#glycol#spacer#(PEG:#9#atoms)#to#relieve#any#unfavorable#conformational#bias.##Based#on#t h ese #co n sid era tio n s#
a#set#of#probes#was#designed#as#shown#in#Fig.#2.##The#ruthenium#photocatalyst-conjugate#probe#(/#E)#interacts#with#/01.E#of#the#
/01E:/01G#duplex,#whereas#the#coumarin-conjugate#probes#(@"#E-H)#interact#with#/01G#of#the#same#duplex.##Three#different#coumarin-
conjugate#probes#were#prepared#in#order#to#vary#the#distance#between#the#reaction#sites.#
The#reactions#were#monitored#through#the#increase#of#fluorescence#arising#from#the#unmasking#of#coumarin#as#a#function#of#time.##
Using#optimal#conditions#for#triplex#formation#(pH#6.85,#HEPES-KOH#buffer,#50#mM#NaCl)#and#performing#the#reaction#at#100#nM#of#probes#
with#stoichiometric#template,#we#were#pleased#to#observe#a#dsRNA-specific#reaction#(Fig.#2a).##The#reaction#of#/#E#and#@"#E#proceeded#
significantly#faster#in#the#presence#of#dsRNA#than#with#either#of#the#single#strand#RNA#(/01E#or#/01G).##Comparing#the#initial#speed#of#the#
reaction#from#the#slope#of#the#reac tion#a fter#10 #m in,#the#d sRN A#w a s#7#tim es #faster#th an#eith er # sin gle#strand#RNA#and #71#times#faster#than#
the#background#reaction#lacking#RNA #tem pla te.##It#is#notew orth y#tha t#the#high #selectivity#fo r#dsR NA #vs#single#strand#RNA#templated#reaction#
is#dependent#on#th e#s alt#c o nc en tra tio n ;#in#th e #ab se n ce#o f#N a Cl,#th e #rea ction#of#dsRNA #w as#o nly#2 - fo ld#faste r#tha n#ssRNA#(see#Fig.#S1,#A).##At#
concentration#of#NaCl#above#50#mM,#the#reaction#had#comparable#pe rforman ce#as#50#mM #bu t#with#slower#kinetics#(Fig.#S1#B#and#C#for#60#
and#70#mM#NaCl,#respectively).##Importantly,#the#reaction #also#a fford ed#go od #discrim ina tion#b etw een #dsR NA #an d#ssR NA #tem pla te#in#PB S#
buffer#(Fig.#S1#D).##
We#next#compared#the#reactivity#of#coumarin#probes#leaving#a#single#or#double#base-pair#gap#between#the#probes#forming#the#
triplex#(@"#G#and#@"#H#respectively).##Both#of#these#reactions#pro ved #to#be#a lm os t#twice #as#fas t#com p are d#to#the #reactio n#o f#@"#E#+#/#E#
(Fig.#2#B#and#C),#with#an#initial#rate#of#reaction#that#is#over#10-fold#faster#for#dsRNA#than#the#reaction#w ith#eithe r#ssRN As .##A#dsD N A#
template#with#the#same#sequen ce#as #/01E# +#/01G#did#not#catalyze#the#reaction,#nor#did#either#of#the#ssDNA#template#(Fig.#2C).###Assuming#
a#quantitative#formation#of#the#quaternary#complex#of#the#dsRNA#with#the#two#probes#forming#the#triplex,#the#reaction#is#anticipated#to#
follow#a#first#order#kinetics#and#the#half-life #o f#th e #rea ctio n #ca n#b e #us ed #to #d eriv e#a #ps eu d o #first-order#rate#constant.##Following#this#analysis,#
rates#of#0.44#x#10
-3#
to#0.89#x#10
-3
#s
-1
#were#measured#for#the#different#reactions#(Fig.#1D).##Comparing#the#sequence#of#@"#E#vs#@"#G,#they#

3
have#the#same#nucleobase#content,#suggesting#that#the#2-fold#kinetic#difference#observed#between#the#reactions#of#/#E#with#@"#E#vs#@"#G#
is#the#fact#that#there#is#a#m o re #fa vo rab le#reagent#alignment#in#the#latter#reaction.###Another#possible#explanation#is#the#fact#that#adjacent#M#
nucleobases#at#the#junction#of#@"#E#and#/#E#triplex#with#protonated#amino#pyridines#result#in#a#distortion#that#is#slightly#detrim en tal#to#the #
reaction#kinetics.##The#sam e#d ep e nd e n ce#o f#N a C l#co nc en tra tio n #w as#o b se rve d#f or#t he #re act ion #o f#@"#H#and#/#E#as#with#@"#E#and#/#E#with#
respect#to#the#selectivity#of#dsRNA#templa ted #reactio n#vs#ss RN A#templated#reaction.#Namely,#50#mM #Na Cl,#or#h ighe r#conc entra tions,#is#
important#to#achieve #go o d #se lect ivity#o f#d s RN A #vs#s sR N A#( Fig .#S2 #A,B ).###Importantly,#the#reaction#of #@"#H#with#/#E#proceeded#equally#at#pH#
7.4#with#a#high#selectivity#for#dsRNA##(Fig.#S2#C,D).##Performing#the#reaction#at#different#concentrations#(100#–#400#nM)#did#not#have#a#
strong#influence#on#the#reaction#kinetics#suggesting#that#indeed,#the#quaternary#complex#is#formed#quantitatively#under#these#conditions#
(Fig.#S3).#
#
<5=#*&.GF#Top:#RNA#sequences#used#and#alignment#of#the#PNA#probes#(see#SI#for#explicit#structures);#(A)#/#EI@"#E,.(B)#/#EI@"#G,#and#(C)#/#EI@"#H.in#the#
presence#of#/01EI/01G,#/01E,#/01G,#or#none.#peg#=#[(aminoet h oxy)ethoxy]#acetic#acid,#K#=#l y s ine.#Reaction#condition:#100#nM#of#PNAs#and#100#nM#of#ss#or#
dsRNAs,#30#mM#HEPES-KOH#pH#6.85,#50#mM#NaCl,#5#mM#sodium#ascorbate,#0.02#%#Tween-20;#(D)#Measured#half-life#and#k
app#
of#the#templated#reactions.#
#
#We#then#evaluated#the#performance#of#the#reaction#using#sub-stoichiometric#quantities#of#template#in#order#to#achieve#signal#
amplification.##Using#20%#dsRNA,#the#yield#of#product#exceeded#template#loading#within#less#than#20#min#of#reaction#and#reached#76%#
completion#within#2h#(Fig.#3#A).#Under#these#conditions ,#the#reac tion#reta ined #the#sa m e#disc rimin ation #for#ds RN A#ov er#either#o f#the#ssR NA .##
Reducing#the#concentration#of#dsRNA#to#5#nM#(0.02#equivalent#of#template)#and#0.5#nM#(0.002#equivalent#of#template)#still#afforded#
reaction#discernable#over#backgrou nd .##Run ning #the#rea ction #for#7h #affo rded #a#total#conversion#of#68#%#conversion#with#0.02#equivalent#of#
the#template.#Adjusting#for#the#background#reaction,#this#corresponds#a#19-fold#signal#amplification#(37#%#yield,#19#turnovers).##The#
reaction#with#0.5#nM#template #afford ed #3#%#yield#(adjusting#for#the#background#conversion)#after#7h,#representing#15-fold#signal#
amplification.##It#should#be#noted#that#the#rate#of#triplex#formation#(10
3
#to#10
4
#M
-1
s
-1
)
[33]
#is#known#to#be#slow e r#th an #h yb rid iza tio n#o f#a #
duplex#(10
6
#M
-1
s
-1
).
[32]
#We#have#recently#shown#that#templated#reactions#engineered#to#yield##a#product#with#lower#affinity#for#the#template#
enhances#the#turnover#of#the#reaction,#provided#reagent#dissociation#is#rate-limiting.
[34]
##However,#in#the#present#case,#the#reaction#is#the#
rate-limiting#step.###
#
#

4
#
<5=#*&.HF#(A)#Plot#of#the#conversion#for#the#templated#reaction#of#@"#H#(250#nM)#with#1#eq.#(250#nM,#black#line)#or#0.2#e q.#of#/#E#(50#nM,#red#line)#in#the#
presence#of#0.2#eq.#(50#nM)#of#dsRNA#(/01EI/01G)#or#ssRNA;#(B)#Plot#of#the#conversion#for#the#reaction#at#various#template#(dsRNA:#/01EI/01G)#loading;#(C)#
Calculated#yield#and#turnovers#for#the#reactions#(the#yield#was#obtained#by#subtracting#the#conversion#observed#in#the#presence#and#absence#of#template).#
Reaction#condition:#30#mM#HEPES-KOH#pH#6.85,#50#mM#NaCl,#5#mM#sodium#ascorbate,#0.02#%#Tween-20.#Yields#are#calculated#based#on#a#titration#of#the#
coumarin,#see#SI#for#details.#
The#number#of#M#nucleobases#in#a#given#PNA#probe#dicta te s#th e #nu m b e r#o f#ca tio nic #ch arg es #an d #th is#h as #a#st ron g #im p ac t#o n #th e#
overall#affinity#and#kinetics#of#the#triplex#formation;#in#particular#at#higher#NaCl#concentrations.
[33]
#The#ruthenium##photocatalyst#further#
adds#two#cationic#charges#to#the#PNA#probes.##Analysis#of#the#sequences#used#in#the#reactions#shown#above#revealed#that#the#/#E#
sequence#(7#charges)#was#overall#more#cationic#than#the#@"#E-H#sequences#(3-4#charges).###By#switching#the#position#of#the#photocatalyst#
and#pyridinium-coumarin,#we#would#alter#the#charge#balance#without#changing#the#overall#PNA#sequ ence s#.#Thus#/#G#and#@"#J.probes#
were#prepared#and#their#performance#in#templated#reactions#studied#(Fig.#4).##Interestingly,#the#reaction#was#found#to#be#more#resilient#to#
high#salt#concentration#and#still#afforded#signal#at#150#mM#NaCl.##Under#the#same#conditions,#/#E#and#@"#H#(same#PNA#sequences#bu t#
opposite#position#of#photocatalyst#and#pyridinium-coumarin#conjugate)#did#not#afford#reaction#pointing#to#the#importance#of#the#overall#
cationic#charges#for#the#triplex#formation#at#high#salt#concentrations.#The#reaction#was#specific#for#the#sequence#of#dsRNA,#a#misma tch ed#
sequence#was#comparable#to#no#template#(Fig.#4B).###Increasin g#th e#le ng th #of#th e#PE G #linke r#(from#9#atoms#to#18#atoms)#betwe en #th e#PN A #
and#reagents#(ruthenium#photocatalyst#and#pyridinium-coumarin#conjugate)#did#not#have#a#significant#impact#on#the#reaction#kinetics#(Fig.#
S4A).##PNAs#modified#at#the#γ#position(L#stereochemistry)#have#been#reported#to#enhance#duplex#stability#and#indu ce#a#helical#
preorganization#of#PNAs.
[35]
##Using#a#γ-modified#PNA#with#serine#side#chains,
[36]
#we#tested#the#reaction#with#the#same#sequence#as#/#G#and#
@"#J#wherein#four#and#three#of#the#positions,#respectively,##contained#a#γ-modification.###Templated#reaction#using#dsRNA#showed#slower#
reaction#for#the#probes#with#γ-modified#PNAs#suggesting#that#such#modifications#are#detrimental#to#the#triplex#formation#(Fig.#S4B).###
#
<5=#*&.JF#(A)#Templated#reaction#of#/#GI@"#J#in#the#presence#of#/01EI/01G.with#different#concentration#of#NaCl#(background#signal#is#from#ssRNA#or#none);#
(B)#templated#reaction#of#/#GI@"#J#in#the#presence#of#fully#matched #ds RN A#(/01EI/01G)#or#mismatched#dsRN A#sequen ce#(/01HI/01J)#in#100#mM#NaCl#
concentration.#Reaction#condition:#100nM#of#PNAs#and#100#nM#of#ss#or#dsRNAs,#30#mM#pH#6.85#HEPES-KOH,#5#mM#sodium#ascorbate,#0.02#%#Tween-20,#
incubation#time:#30#min.#
'
Detection'of'pre-miR-31'sequence'using'dsRNA-templated 'rea ction'
Based#on#the#successful#design#of#templated#reactions#responding#to#dsRNA,#we#turned#our#attention#to#the#application#of#this#technology#
for#the#detection#of#pre-microRNA#sequences,#an#important#class#of#ncRN A.#Pre-microRNAs#are#well-known#to#regulate#expression,#serving#

Figures
Citations
More filters
Journal ArticleDOI

Peptide nucleic acid (PNA) and its applications in chemical biology, diagnostics, and therapeutics.

TL;DR: Recent advances in PNA stability, metabolic stability, and ease of chemical modifications have enabled important applications such as antisense agents, gene editing, nucleic acid sensing and as a platform to program the assembly of PNA-tagged molecules.
Journal ArticleDOI

Visible Light Photoredox Catalysis Using Ruthenium Complexes in Chemical Biology.

TL;DR: The development of bioorthogonal reactions have had a transformative impact in chemical biology and the quest to expand this toolbox continues.
Journal ArticleDOI

Synthetic, Structural, and RNA Binding Studies on 2-Aminopyridine-Modified Triplex-Forming Peptide Nucleic Acids.

TL;DR: The first NMR structural studies were performed on an M-modified PNA-dsRNA triplex which identified unfavorable steric and electrostatic repulsion between the 4-methoxy group of M and the oxygen of the carbonyl group connecting the adjacent nucleobase to PNA backbone.
Journal ArticleDOI

Biosupramolecular Systems: Integrating Cues into Responses.

TL;DR: Leading examples of networks, the methodologies available to translate an input into various outputs, and speculate on potential applications and directions for the field are reviewed.
Journal ArticleDOI

PNA-Based MicroRNA Detection Methodologies.

TL;DR: The significance of targeting miR is discussed, providing a wide range of PNA-based approaches to detect them at biologically significant concentrations, based on electrochemical, fluorescence and colorimetric assays.
References
More filters
Journal ArticleDOI

Nuclear Export of MicroRNA Precursors

TL;DR: Exposure of Exportin-5 (Exp5) mediates efficient nuclear export of short miRNA precursors (pre-miRNAs) and its depletion by RNA interference results in reduced miRNA levels.
Journal ArticleDOI

Mechanisms of gene silencing by double-stranded RNA

TL;DR: A key step in known silencing pathways is the processing of dsRNAs into short RNA duplexes of characteristic size and structure, which guide RNA silencing by specific and distinct mechanisms.
Journal ArticleDOI

Non-coding RNA genes and the modern RNA world.

TL;DR: Non-coding RNAs seem to be particularly abundant in roles that require highly specific nucleic acid recognition without complex catalysis, such as in directing post-transcriptional regulation of gene expression or in guiding RNA modifications.
Journal ArticleDOI

The rise of regulatory RNA.

TL;DR: A central role for RNA in human evolution and ontogeny is suggested and the emergence of the previously unsuspected world of regulatory RNA from a historical perspective is reviewed.
Journal ArticleDOI

Diversifying microRNA sequence and function

TL;DR: This work has shown that the production of different isoforms of individual miRNAs in specific cells and tissues may have broader implications for miRNA-mediated gene expression control.
Related Papers (5)
Frequently Asked Questions (10)
Q1. What have the authors contributed in "Double-stranded rna-specific templated reaction with triplex forming pna" ?

Herein the authors report double‐stranded RNA‐specific templated reaction resulting from PNA‐reagent conjugates that are brought within reactive distance through the formation of sequence‐specific triplexes onto double‐stranded RNA. 

The authors have recently shown that templated reactions engineered to yield a product with lower affinity for the template enhances the turnover of the reaction, provided reagent dissociation is rate-limiting.[34] 

While γ-modified PNAs have been shown to enhance duplex stability, this modification was found to be detrimental to triplex formation. 

Even at 12.5 nM of a target sample, a distinguishable signal was obtained after 30 min, which implies practical detection of pre-miR-31 at low nanomolar concentration. 

The design of the probes was made with the following considerations: each probe should use a different strand of the duplex to minimize any background reaction arising from ssRNA-templated reaction; sequences rich in M and T monomers will form more stable triplex; 8-mer probes should achieve the necessary affinity to yield a templated reaction at low concentration (less than100 nM); the reagents should be separated from the PNA with a short polyethylene glycol spacer (PEG: 9 atoms) to relieve any unfavorable conformational bias. 

PNAs modified at the γ position(L stereochemistry) have been reported to enhance duplex stability and induce a helical preorganization of PNAs.[35] 

An important design consideration to achieve high discrimination between dsRNA and ssRNA is the length of the PNA probe and the number of M nucleobases. 

Rozner and coworkers extended the scope of triplex forming PNA with the introduction of monomers bearing novel nucleobases that extend the Hoogsteen triplex basepairing[26] to any sequence permutation (M•G-C, P•C-G, E•U-A, Fig. 1) and showed that triplex formation was selective for dsRNA over dsDNA.[27-30] 

Detection of pre-miR-31 sequence using dsRNA-templated reactionBased on the successful design of templated reactions responding to dsRNA, the authors turned their attention to the application of this technology for the detection of pre-microRNA sequences, an important class of ncRNA. 

It is noteworthy that the high selectivity for dsRNA vs single strand RNA templated reaction is dependent on the salt concentration; in the absence of NaCl, the reaction of dsRNA was only 2-fold faster than ssRNA (see Fig. S1, A).