scispace - formally typeset
Open Access

Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems

Reads0
Chats0
TLDR
In this paper, the effects of storage capacity, storage unit heat transfer characteristics, collector area and location on the system performance are investigated for systems utilizing sodium sulfate decahydrate and paraffin wax as storage media.
Abstract
Models describing the transient behavior of phase-change energy storage (PCES) units are presented. Simulation techniques are used in conjunction with these models to determine the performance of solar heating systems utilizing PCES. Both air-based and liquid-based systems are investigated. The effects of storage capacity, storage unit heat transfer characteristics, collector area and location on the system performance are investigated for systems utilizing sodium sulfate decahydrate and paraffin wax as storage media. Optimum ranges of storage sizes are recommended on the basis of systems' thermal performance. Comparison is made between systems utilizing PCES and those using sensible heat storage, viz. rock beds in air-based systems and water tanks in liquid-based systems. The variation of the solar supplied fraction of load with storage size and collector area is given for systems utilizing both types of storage. The effects of location and collector energy loss coefficient on the relative performance of PCES and sensible heat storage are also investigated.

read more

Citations
More filters
Journal ArticleDOI

Review on thermal energy storage with phase change materials and applications

TL;DR: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high energy storage density and the isothermal nature of the storage process.
Journal ArticleDOI

A review on phase change energy storage: materials and applications

TL;DR: In this paper, a review of the phase change materials (PCM) and their application in energy storage is presented, where the main advantages of encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs.
Journal ArticleDOI

A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)

TL;DR: In this paper, the phase change problem has been formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for, which makes it difficult for comparison to be made to assess the suitability of PCMs to particular applications.
Journal ArticleDOI

Solar energy storage using phase change materials

TL;DR: In this paper, the state of the art of phase change materials (PCMs) for storing solar energy is discussed. But, prior to the large-scale practical application of this technology, it is necessary to resolve numerous problems at the research and development stage.
Journal ArticleDOI

PCM thermal storage in buildings: A state of art

TL;DR: A comprehensive review of various possible methods for heating and cooling in buildings is discussed in this article, where the thermal performance of various types of systems like PCM trombe wall, PCM wallboards, and PCM shutters are presented.
References
More filters
Journal ArticleDOI

Review on thermal energy storage with phase change materials and applications

TL;DR: The use of a latent heat storage system using phase change materials (PCMs) is an effective way of storing thermal energy and has the advantages of high energy storage density and the isothermal nature of the storage process.
Journal ArticleDOI

A review on phase change energy storage: materials and applications

TL;DR: In this paper, a review of the phase change materials (PCM) and their application in energy storage is presented, where the main advantages of encapsulation are providing large heat transfer area, reduction of the PCMs reactivity towards the outside environment and controlling the changes in volume of the storage materials as phase change occurs.
Journal ArticleDOI

A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)

TL;DR: In this paper, the phase change problem has been formulated using pure conduction approach but the problem has moved to a different level of complexity with added convection in the melt being accounted for, which makes it difficult for comparison to be made to assess the suitability of PCMs to particular applications.
Journal ArticleDOI

Solar energy storage using phase change materials

TL;DR: In this paper, the state of the art of phase change materials (PCMs) for storing solar energy is discussed. But, prior to the large-scale practical application of this technology, it is necessary to resolve numerous problems at the research and development stage.
Related Papers (5)