scispace - formally typeset
Journal ArticleDOI

Enzymatic hydrogelation of small molecules.

Reads0
Chats0
TLDR
In this Account, the design and application of enzyme-catalyzed or -regulated formation of supramolecular hydrogels that offer a new strategy for detecting the activity of enzymes, screening for enzyme inhibitors, typing bacteria, drug delivery systems, and controlling the fate of cells are illustrated.
Abstract
Enzymes, a class of highly efficient and specific catalysts in Nature, dictate a myriad of reactions that constitute various cascades in biological systems. Self-assembly, a process prevalent in Nature, also plays important roles in biology, from maintaining the integrity of cells to performing cellular functions and inducing abnormalities that cause disease. To explore enzyme-regulated molecular self-assembly in an aqueous medium will help to understand and control those important biological processes. On the other hand, certain small organic molecules self-assemble in water to form molecular nanofibers and result in a hydrogel, which is referred to as a "supramolecular hydrogel" (and the small molecules are referred to as "supramolecular hydrogelators"). Supramolecular hydrogelators share common features, such as amphiphilicity and supramolecular interactions (pi-pi interactions, hydrogen bonding, and charge interactions among the molecules, among others) that result in nanostructures and form the three-dimensional networks as the matrices of hydrogels. In this Account, we discuss the use of enzymes to trigger and control the self-assembly of small molecules for hydrogelation, which takes place in vitro or in vivo, extra- or intracellularly. Using phosphatase, thermolysin, beta-lactamase, and phosphatase/kinase as examples, we illustrate the design and application of enzyme-catalyzed or -regulated formation of supramolecular hydrogels that offer a new strategy for detecting the activity of enzymes, screening for enzyme inhibitors, typing bacteria, drug delivery systems, and controlling the fate of cells. Since the expression and distribution of enzymes differ by the types and states of cells, tissues, and organs, using an enzymatic reaction to convert precursors into hydrogelators that self-assemble into nanofibers as the matrices of the hydrogel, one can control the delivery, function, and response of a hydrogel according to a specific biological condition or environment, thus providing an accessible route to create sophisticated materials for biomedicine. Particularly, intracellular enzymatic hydrogelation of small molecules offers a unique means for scientists to integrate molecular self-assembly with inherent enzymatic reactions inside cells for developing new biomaterials and therapeutics at the supramolecular level and improving the basic understanding of dynamic molecular self-assembly in water.

read more

Citations
More filters

Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures

TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Journal ArticleDOI

Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials

TL;DR: This review focuses on various potential applications of supramolecular hydrogels as molecular biomaterials, classified by their applications in cell cultures, tissue engineering, cell behavior, imaging, and unique applications of hydrogelators.
Journal ArticleDOI

Self-assembly and application of diphenylalanine-based nanostructures

TL;DR: This tutorial review aims to introduce a new kind of peptide building block, the diphenylalanine motif, extracted with inspiration of a pathogenic process towards molecular self-assembly.
References
More filters
Journal ArticleDOI

Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures.

TL;DR: The ability to prepare structures in the upper part of this range of sizes would open a route to structures comparable in size (and perhaps complementary in function) to those that can be prepared by microlithography and other techniques of microfabrication.

Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures

TL;DR: In this article, self-assembly is defined as the spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates joined by noncovalent bonds.
Journal ArticleDOI

Selective Differentiation of Neural Progenitor Cells by High-Epitope Density Nanofibers

TL;DR: The artificial nanofiber scaffold induced very rapid differentiation of cells into neurons, while discouraging the development of astrocytes, linked to the amplification of bioactive epitope presentation to cells by the nanofibers.
Journal ArticleDOI

Toward Self-Organization and Complex Matter

TL;DR: The field of supramolecular chemistry aims at developing highly complex chemical systems from components interacting through noncovalent intermolecular forces as mentioned in this paper, and has been a major field of research in biology and physics.
Related Papers (5)