scispace - formally typeset
Journal ArticleDOI

Evaluation of Half‐Heusler Compounds as Thermoelectric Materials Based on the Calculated Electrical Transport Properties

TLDR
A theoretical evaluation of the thermoelectric-related electrical transport properties of 36 half-Heusler (HH) compounds, selected from more than 100 HHs, is carried out in this paper.
Abstract
A theoretical evaluation of the thermoelectric-related electrical transport properties of 36 half-Heusler (HH) compounds, selected from more than 100 HHs, is carried out in this paper. The electronic structures and electrical transport properties are studied using ab initio calculations and the Boltzmann transport equation under the constant relaxation time approximation for charge carriers. The electronic structure results predict the band gaps of these HH compounds, and show that many HHs are narrow-band-gap semiconductors and, therefore, are potentially good thermoelectric materials. The dependence of Seebeck coefficient, electrical conductivity, and power factor on the Fermi level is investigated. Maximum power factors and the corresponding optimal p- or n-type doping levels, related to the thermoelectric performance of materials, are calculated for all HH compounds investigated, which certainly provide guidance to experimental work. The estimated optimal doping levels and Seebeck coefficients show reasonable agreement with the measured results for some HH systems. A few HHs are recommended to be potentially good thermoelectric materials based on our calculations.

read more

Citations
More filters
Journal ArticleDOI

New and Old Concepts in Thermoelectric Materials

TL;DR: The most promising bulk materials with emphasis on results from the last decade are described and the new opportunities for enhanced performance bulk nanostructured composite materials are examined and a look into the not so distant future is attempted.
Journal ArticleDOI

Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides

TL;DR: In this article, the formation and electronic properties of various MXene systems, M 2 C (M = Sc, Ti, V, Cr, Zr, Nb, Ta), M 2 N (M 2 N), with surfaces chemically functionalized by F, OH, and O groups, are examined.
Journal ArticleDOI

Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports.

TL;DR: The results firmly show that high power factors can be realized by adjusting the total filling fraction of fillers with different charge states to reach the optimum carrier density, and lattice thermal conductivity can also be significantly reduced, to values near the glass limit of these materials.
Journal ArticleDOI

Compromise and Synergy in High-Efficiency Thermoelectric Materials.

TL;DR: Novel concepts and paradigms are described here that have emerged, targeting superior TE materials and higher TE performance, including band convergence, "phonon-glass electron-crystal", multiscale phonon scattering, resonant states, anharmonicity, etc.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Projector augmented-wave method

TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Journal ArticleDOI

From ultrasoft pseudopotentials to the projector augmented-wave method

TL;DR: In this paper, the formal relationship between US Vanderbilt-type pseudopotentials and Blochl's projector augmented wave (PAW) method is derived and the Hamilton operator, the forces, and the stress tensor are derived for this modified PAW functional.
Journal ArticleDOI

Special points for brillouin-zone integrations

TL;DR: In this article, a method for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector is given, where the integration can be over the entire zone or over specified portions thereof.
Related Papers (5)