scispace - formally typeset
SciSpace - Your AI assistant to discover and understand research papers | Product Hunt

Journal ArticleDOI

Evaluation of the Antibacterial Activity of 14 Medicinal Plants in Côte d’Ivoire

12 Nov 2011-Tropical Journal of Pharmaceutical Research (Faculty of Pharmacy, University of Benin)-Vol. 10, Iss: 3

TL;DR: The findings provide support for the use of these plants in traditional medicine for treatment of typhoid fever and gastrointestinal disorders, and are thus, potential sources of drugs that would need to be subjected to further studies.

AbstractPurpose: To evaluate the antibacterial potentials of fourteen ethnobotanically selected plants traditionally used in different parts of Cote d’Ivoire for the treatment of typhoid fever and gastrointestinal disorders. Method: The antimicrobial activity of the extracts of the plant was tested against a collection strain of Salmonella typhimurium, a clinical strain of Salmonella typhi and Pseudomonas aeruginosa by macrobroth dilution method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. Results: All the plants had bactericidal activity against at least one of the test microorganisms with both MIC and MBC ranging from 2.5 to > 80 mg/ml. Among the plant extracts, Terminalia glaucescens . (Combretaceae) Bersama abyssinica subsp. paullinioides (Melianthaceae ) and Abrus precatorius (Fabaceae) showed the most promising broad spectrum antibacterial properties, inhibiting all of the strains tested, especially S. Typhi and P. aeruginosa , with MBC ranging from 2.5 to 5 mg/ml. Conclusion: The findings provide support for the use of these plants in traditional medicine for treatment of typhoid fever and gastrointestinal disorders, and are thus, potential sources of drugs that would need to be subjected to further studies. Keywords: Antimicrobial activity, Ivorian medicinal plants, MIC, MBC.

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
Haiying Cui1, Xuejing Zhang1, Hui Zhou1, Chengting Zhao1, Lin Lin1 
TL;DR: Salvia sclarea essential oil damaged the cell membranes and changed the cell membrane permeability, leading to the release of some cytoplasm such as macromolecular substances, ATP and DNA.
Abstract: Nowadays, essential oils are recognized as safe substances and can be used as antibacterial additives. Salvia sclarea is one of the most important aromatic plants cultivated world-wide as a source of essential oils. In addition to being flavoring foods, Salvia sclarea essential oil can also act as antimicrobials and preservatives against food spoilage. Understanding more about the antibacterial performance and possible mechanism of Salvia sclarea essential oil will be helpful for its application in the future. But so far few related researches have been reported. In our study, Salvia sclarea oil showed obvious antibacterial activity against all tested bacterial strains. Minimum inhibitory concentration (MIC) and minimum bactericide concentration (MBC) of seven pathogens were 0.05 and 0.1 % respectively. In addition, Salvia sclarea oil also exhibited a significant inhibitory effect on the growth of Escherichia coli (E. coli) in phosphate buffer saline (PBS) and meats. After treated with Salvia sclarea oil, Scanning Electron Microscope (SEM) images can clearly see the damage of cell membrane; the intracellular ATP concentrations of E. coli and S. aureus reduced 98.27 and 69.61 % respectively, compared to the control groups; the nuclear DNA content of E. coli and S. aureus was significantly reduced to 48.32 and 50.77 % respectively. In addition, there was massive leakage of cellular material when E. coli and S. aureus were exposed to Salvia sclarea oil. Salvia sclarea essential oil damaged the cell membrane and changed the cell membrane permeability, leading to the release of some cytoplasm such as macromolecular substances, ATP and DNA. In general, the antimicrobial action of Salvia sclarea essential oil is not only attributable to a unique pathway, but also involves a series of events both on the cell surface and within the cytoplasm. Therefore, more experiments need to be done to fully understand the antimicrobial mechanism of Salvia sclarea essential oil.

55 citations


Cites background from "Evaluation of the Antibacterial Act..."

  • ...The incubation time of Escherichia coli, Bacillus subtilis, Pseudomonas Aeruginosa, Bacillus pumilus and Salmonella typhimurium is 24 h; Staphylococcus aureus and Klebsiella pneumonia is 48 h (Bolou et al. 2011; Ruparelia et al. 2008)....

    [...]


Journal ArticleDOI
TL;DR: The good antimicrobial properties of Abrus precatorius, Terminalia phanerophlebia, Indigofera arrecta, and Pentanisia prunelloides authenticate their traditional use in the treatment of respiratory diseases, and further pharmacological and phytochemical analysis is required.
Abstract: Respiratory ailments are major human killers, especially in developing countries. Tuberculosis (TB) is an infectious disease causing a threat to human healthcare. Many South African plants are used in the traditional treatment of TB and related symptoms, but there has not been a sufficient focus on evaluating their antimicrobial properties. The aim of this study was to evaluate the antimicrobial properties of plants used traditionally to treat TB and related symptoms against microorganisms (Klebsiella pneumoniae, Staphylococcus aureus, and Mycobacterium aurum A+) associated with respiratory infections using the microdilution assay. Ten plants were selected based on a survey of available literature of medicinal plants used in South Africa for the treatment of TB and related symptoms. The petroleum ether, dichloromethane, 80% ethanol, and water extracts of the selected plants were evaluated for antibacterial activity. Out of 68 extracts tested from different parts of the 10 plant species, 17 showed good antimicrobial activities against at least one or more of the microbial strains tested, with minimum inhibitory concentration ranging from 0.195 to 12.5 mg/mL. The good antimicrobial properties of Abrus precatorius, Terminalia phanerophlebia, Indigofera arrecta, and Pentanisia prunelloides authenticate their traditional use in the treatment of respiratory diseases. Thus, further pharmacological and phytochemical analysis is required.

36 citations


Journal ArticleDOI
TL;DR: The present study showed significant antimicrobial activity of compounds 1, 2, 3 and 4 against the tested microorganisms, which could lead to new options for the treatment of infectious diseases and emerging drug resistance.
Abstract: Resistance of bacteria and fungi to antibiotics is one of the biggest problems that faces public health. The present work was designated to evaluate the antimicrobial activities of saponins from Melanthera elliptica and their synergistic effects with standard antibiotics against pathogenic phenotypes. The plant extract was prepared by maceration in methanol. The methanol extract was partitioned into ethyl acetate and n-butanol extracts. Column chromatography of the n-butanol extract followed by purification of different fractions led to the isolation of four saponins. Their structures were elucidated on the basis of spectra analysis, and by comparison with those from the literature. The antimicrobial activities of the extracts/compounds alone and their combinations with tetracycline and fluconazole were evaluated using the broth microdilution method through the determination of minimum inhibitory concentration (MIC) and minimum microbicidal concentration. Four compounds: 3-O-β-d-glucuronopyranosyl-oleanolic acid (1), 3-O-β-d-glucuronopyranosyloleanolic acid 28-O-β-d-glucopyranosyl ester (2), 3-O-β-d-glucopyranosyl(1 → 2)-β-d-glucuronopyranosyl oleanolic acid (3) and 3-O-β-d-glucopyranosyl(1 → 2)-β-d-glucuronopyranosyl oleanolic acid 28-O-β-d-glucopyranosyl ester (4) were isolated. Compounds 1, 2 and 3 showed the largest antibacterial activities (MIC = 8–128 μg/mL) whereas compound 4 displayed the highest antifungal activities (MIC = 8–16 μg/mL). The antibacterial activities of compounds 1 and 2 (MIC = 16–32 μg/mL) against multi-drug-resistant Escherichia coli S2 (1) and Shigella flexneri SDINT are equal to those of vancomycin (MIC = 16–32 μg/mL) used as reference antibiotic. The present study showed significant antimicrobial activity of compounds 1, 2, 3 and 4 against the tested microorganisms. The saponins act in synergy with the tested standard antibiotics. This synergy could lead to new options for the treatment of infectious diseases and emerging drug resistance.

20 citations


Journal ArticleDOI
TL;DR: All the four medicinal plants, particularly those tested essential oils, can be considered as potential candidates for biocontrol of M. ovinus sheep ked.
Abstract: Twelve medicinal plants and a commercially used drug Ivermectin were examined for insecticidal activity against Melophagus ovinus sheep ked at different time intervals using in vitro adult immersion test. The findings show that at 3.13 µL/mL, 6.25 µL/mL and 12.5 µL/mL concentration of Cymbopogon citratus, Foeniculum vulgare and Eucalyptus globulus essential oils respectively, recorded 100% mortalities against M. ovinus within 3 hour of exposure. Significantly higher insecticidal activity of essential oils was recorded (P = 0.00) when compared to 10 μ g/mL Ivermectin after 3-hour exposure of M. ovinus at a concentration of ≥1.57 μ L/mL, ≥3 μ L/mL, and ≥12.7 μ L/mL essential oils of C. citratus, F. vulgare, and E. globulus, respectively. Among essential oils, C. citratus has showed superior potency at a three-hour exposure of the parasite (P = 0.00) at a concentration of ≥0.78 μ L/mL. Strong antiparasitic activity was recorded by aqueous extract of Calpurnia aurea (80% mortality) at a concentration of 200 mg/mL within 24 h among aqueous extracts of 9 medicinal plants. The results indicated all the four medicinal plants, particularly those tested essential oils, can be considered as potential candidates for biocontrol of M. ovinus sheep ked.

18 citations


01 Jan 2014
TL;DR: An attempt for developing a simple, aqueous and non aqueously based Bendamustine Hydrochloride, which is also being studied for the treatment of sarcoma.
Abstract: DNA Microarray is the emerging technique in Biotechnology. The many varieties of DNA microarray or DNA chip devices and systems are described along with their methods for fabrication and their use. It also includes screening and diagnostic applications. The DNA microarray hybridization applications include the important areas of gene expression analysis and genotyping for point mutations, single nucleotide polymorphisms (SNPs), and short tandem repeats (STRs). In addition to the many molecular biological and genomic research uses, this review covers applications of microarray devices and systems for pharmacogenomic research and drug discovery, infectious and genetic disease and cancer diagnostics, and forensic and genetic identification purposes.

10 citations


References
More filters

01 Jan 2001
TL;DR: The supplemental information presented in this document is intended for use with the antimicrobial susceptibility testing procedures published in the following Clinical and Laboratory Standards Institute (CLSI)–approved standards.
Abstract: The supplemental information presented in this document is intended for use with the antimicrobial susceptibility testing procedures published in the following Clinical and Laboratory Standards Institute (CLSI)–approved standards: M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition; M07-A10—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; and M11-A8—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard— Eighth Edition. The standards contain information about both disk (M02) and dilution (M07 and M11) test procedures for aerobic and anaerobic bacteria. Clinicians depend heavily on information from the microbiology laboratory for treatment of their seriously ill patients. The clinical importance of antimicrobial susceptibility test results demands that these tests be performed under optimal conditions and that laboratories have the capability to provide results for the newest antimicrobial agents. The tabular information presented here represents the most current information for drug selection, interpretation, and QC using the procedures standardized in the most current editions of M02, M07, and M11. Users should replace the tables published earlier with these new tables. (Changes in the tables since the previous edition appear in boldface type.) Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI supplement M100S (ISBN 1-56238-923-8 [Print]; ISBN 1-56238924-6 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087 USA, 2016. The data in the interpretive tables in this supplement are valid only if the methodologies in M02-A12—Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Twelfth Edition; M07-A10—Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Tenth Edition; and M11-A8—Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard— Eighth Edition are followed.

14,630 citations


Journal ArticleDOI
TL;DR: The current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity, are summarized and the structure and antimicrobial properties of phytochemicals are addressed.
Abstract: The use of and search for drugs and dietary supplements derived from plants have accelerated in recent years. Ethnopharmacologists, botanists, microbiologists, and natural-products chemists are combing the Earth for phytochemicals and “leads” which could be developed for treatment of infectious diseases. While 25 to 50% of current pharmaceuticals are derived from plants, none are used as antimicrobials. Traditional healers have long used plants to prevent or cure infectious conditions; Western medicine is trying to duplicate their successes. Plants are rich in a wide variety of secondary metabolites, such as tannins, terpenoids, alkaloids, and flavonoids, which have been found in vitro to have antimicrobial properties. This review attempts to summarize the current status of botanical screening efforts, as well as in vivo studies of their effectiveness and toxicity. The structure and antimicrobial properties of phytochemicals are also addressed. Since many of these compounds are currently available as unregulated botanical preparations and their use by the public is increasing rapidly, clinicians need to consider the consequences of patients self-medicating with these preparations.

6,996 citations


10 Aug 2007
TL;DR: Plants produce a diverse array of secondary metabolites, many of which have antimicrobial activity, which occur as inactive precursors and are activated in response to tissue damage or pathogen attack.
Abstract: Plants produce a diverse array of secondary metabolites, many of which have antimicrobial activity. Some of this compounds are constitutive, existing in healthy plants in their biologically active forms. Others such as cyanogenic glycosides and glucosinolates, occur as inactive precursors and are activated in response to tissue damage or pathogen attack.

2,671 citations


"Evaluation of the Antibacterial Act..." refers background in this paper

  • ...The antimicrobial activities of various plants have been reported by several researchers [15,16]....

    [...]



01 Jan 1988

545 citations