scispace - formally typeset
Journal ArticleDOI

Evidence for Large Decadal Variability in the Tropical Mean Radiative Energy Budget

Reads0
Chats0
TLDR
New evidence is presented that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought and the results indicate that the radiation budget changes are caused by changes in tropical mean cloudiness.
Abstract
It is widely assumed that variations in Earth's radiative energy budget at large time and space scales are small. We present new evidence from a compilation of over two decades of accurate satellite data that the top-of-atmosphere (TOA) tropical radiative energy budget is much more dynamic and variable than previously thought. Results indicate that the radiation budget changes are caused by changes in tropical mean cloudiness. The results of several current climate model simulations fail to predict this large observed variation in tropical energy budget. The missing variability in the models highlights the critical need to improve cloud modeling in the tropics so that prediction of tropical climate on interannual and decadal time scales can be improved.

read more

Citations
More filters

Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Journal ArticleDOI

Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999

TL;DR: It is indicated that global changes in climate have eased several critical climatic constraints to plant growth, such that net primary production increased 6% (3.4 petagrams of carbon over 18 years) globally.
Journal ArticleDOI

Constraints on future changes in climate and the hydrologic cycle

TL;DR: It will be substantially harder to quantify the range of possible changes in the hydrologic cycle than in global-mean temperature, both because the observations are less complete and because the physical constraints are weaker.
Journal ArticleDOI

Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models

TL;DR: In this article, the authors analyzed the sensitivity of the tropical cloud radiative forcing to a change in sea surface temperature that is simulated by 15 coupled models simulating climate change and current interannual variability.
Journal ArticleDOI

Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data

TL;DR: Zhang et al. as discussed by the authors used a more advanced NASA Goddard Institute for Space Studies (GISS) radiative transfer model and improved ISCCP cloud climatology and ancillary data sets.
References
More filters
Journal ArticleDOI

The NCEP–NCAR 50-Year Reanalysis: Monthly Means CD-ROM and Documentation

TL;DR: The National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR) have cooperated in a project to produce a retroactive record of more than 50 years of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities as mentioned in this paper.
Book ChapterDOI

The Scientific Basis

TL;DR: In this paper, the topology of the tetrahedral linkage and the efficiency of space filling are compared for the various polymorphs of SiO2, and the displacive transformations from a more open high-temperature form (e.g., "high" or "h") to a denser form stable at lower temperatures (α quartz or cristobalite) are discussed.
Journal ArticleDOI

Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment

TL;DR: The CERES broadband scanning radiometers are an improved version of the Earth Radiation Budget Experiment (ERBE) radiometers as mentioned in this paper, which is an investigation to examine the role of cloud/radiation feedback in the Earth's climate system.
Journal ArticleDOI

The impact of new physical parametrizations in the Hadley Centre Climate Model—HADAM3

TL;DR: HadAM3 (Hadley Centre Atmospheric Model version 3) as discussed by the authors is the latest version of the Hadley Centre climate model, which represents a significant improvement over the previous version, HadAM2b.
Journal ArticleDOI

The National Center for Atmospheric Research Community Climate Model: CCM3*

TL;DR: The latest version of the National Center for Atmospheric Research (NCAR) Community Climate Model (CCM3) is described in this article, where the changes in both physical and dynamical formulation from CCM2 to CCM3 are presented.
Related Papers (5)