scispace - formally typeset
Open AccessProceedings ArticleDOI

Going deeper in facial expression recognition using deep neural networks

TLDR
A deep neural network architecture to address the FER problem across multiple well-known standard face datasets is proposed, comparable to or better than the state-of-the-art methods and better than traditional convolutional neural networks in both accuracy and training time.
Abstract
Automated Facial Expression Recognition (FER) has remained a challenging and interesting problem in computer vision. Despite efforts made in developing various methods for FER, existing approaches lack generalizability when applied to unseen images or those that are captured in wild setting (i.e. the results are not significant). Most of the existing approaches are based on engineered features (e.g. HOG, LBPH, and Gabor) where the classifier's hyper-parameters are tuned to give best recognition accuracies across a single database, or a small collection of similar databases. This paper proposes a deep neural network architecture to address the FER problem across multiple well-known standard face datasets. Specifically, our network consists of two convolutional layers each followed by max pooling and then four Inception layers. The network is a single component architecture that takes registered facial images as the input and classifies them into either of the six basic or the neutral expressions. We conducted comprehensive experiments on seven publicly available facial expression databases, viz. MultiPIE, MMI, CK+, DISFA, FERA, SFEW, and FER2013. The results of our proposed architecture are comparable to or better than the state-of-the-art methods and better than traditional convolutional neural networks in both accuracy and training time.

read more

Citations
More filters
Journal ArticleDOI

AffectNet: A Database for Facial Expression, Valence, and Arousal Computing in the Wild

TL;DR: AffectNet is by far the largest database of facial expression, valence, and arousal in the wild enabling research in automated facial expression recognition in two different emotion models and various evaluation metrics show that the deep neural network baselines can perform better than conventional machine learning methods and off-the-shelf facial expressions recognition systems.
Proceedings ArticleDOI

Reliable Crowdsourcing and Deep Locality-Preserving Learning for Expression Recognition in the Wild

TL;DR: A new DLP-CNN (Deep Locality-Preserving CNN) method, which aims to enhance the discriminative power of deep features by preserving the locality closeness while maximizing the inter-class scatters, is proposed.
Journal ArticleDOI

Deep Facial Expression Recognition: A Survey

TL;DR: A comprehensive survey on deep facial expression recognition (FER) can be found in this article, including datasets and algorithms that provide insights into the intrinsic problems of deep FER, including overfitting caused by lack of sufficient training data and expression-unrelated variations, such as illumination, head pose and identity bias.
Journal ArticleDOI

Occlusion Aware Facial Expression Recognition Using CNN With Attention Mechanism

TL;DR: Visualization results demonstrate that, compared with the CNN without Gate Unit, ACNNs are capable of shifting the attention from the occluded patches to other related but unobstructed ones and outperform other state-of-the-art methods on several widely used in thelab facial expression datasets under the cross-dataset evaluation protocol.
Journal ArticleDOI

A Brief Review of Facial Emotion Recognition Based on Visual Information.

TL;DR: A brief review of researches in the field of FER conducted over the past decades, focusing on an up-to-date hybrid deep-learning approach combining a convolutional neural network for the spatial features of an individual frame and long short-term memory for temporal features of consecutive frames.
References
More filters
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings ArticleDOI

ImageNet: A large-scale hierarchical image database

TL;DR: A new database called “ImageNet” is introduced, a large-scale ontology of images built upon the backbone of the WordNet structure, much larger in scale and diversity and much more accurate than the current image datasets.
Proceedings ArticleDOI

Going deeper with convolutions

TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Journal Article

Dropout: a simple way to prevent neural networks from overfitting

TL;DR: It is shown that dropout improves the performance of neural networks on supervised learning tasks in vision, speech recognition, document classification and computational biology, obtaining state-of-the-art results on many benchmark data sets.
Journal ArticleDOI

ImageNet Large Scale Visual Recognition Challenge

TL;DR: The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) as mentioned in this paper is a benchmark in object category classification and detection on hundreds of object categories and millions of images, which has been run annually from 2010 to present, attracting participation from more than fifty institutions.
Related Papers (5)