scispace - formally typeset
Journal ArticleDOI

Going deeper than microscopy: the optical imaging frontier in biology

Vasilis Ntziachristos
- 01 Aug 2010 - 
- Vol. 7, Iss: 8, pp 603-614
TLDR
This Review discusses promising photonic methods that have the ability to visualize cellular and subcellular components in tissues across different penetration scales, according to the tissue depth at which they operate.
Abstract
Optical microscopy has been a fundamental tool of biological discovery for more than three centuries, but its in vivo tissue imaging ability has been restricted by light scattering to superficial investigations, even when confocal or multiphoton methods are used. Recent advances in optical and optoacoustic (photoacoustic) imaging now allow imaging at depths and resolutions unprecedented for optical methods. These abilities are increasingly important to understand the dynamic interactions of cellular processes at different systems levels, a major challenge of postgenome biology. This Review discusses promising photonic methods that have the ability to visualize cellular and subcellular components in tissues across different penetration scales. The methods are classified into microscopic, mesoscopic and macroscopic approaches, according to the tissue depth at which they operate. Key characteristics associated with different imaging implementations are described and the potential of these technologies in biological applications is discussed.

read more

Citations
More filters
Journal ArticleDOI

Near-infrared fluorophores for biomedical imaging

TL;DR: This Review covers recent progress on near-infrared fluorescence imaging for preclinical animal studies and clinical diagnostics and interventions.
Journal Article

In Vivo Endoscopic Optical Biopsy with Optical Coherence Tomography

TL;DR: In this article, optical coherence tomography was adapted to allow high-speed visualization of tissue in a living animal with a catheter-endoscope 1 millimeter in diameter, which was used to obtain cross-sectional images of the rabbit gastrointestinal and respiratory tracts at 10-micrometer resolution.
Journal ArticleDOI

An overview of nanoparticles commonly used in fluorescent bioimaging

TL;DR: An overview of the various kinds of nanoparticles (NPs) that are widely used for purposes of fluorescent imaging, mainly of cells and tissues is given.
Journal ArticleDOI

The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy

TL;DR: This critical review will present the role of nanoparticles (NPs) in the directions that are vital to the new field of nanomedicine, including imaging and drug delivery, and review recent advances in major NP based biomedical applications.
Journal ArticleDOI

Contrast agents for molecular photoacoustic imaging

TL;DR: The physical, chemical and biochemical characteristics of the existing photoacoustic contrast agents are critically reviewed, highlighting key applications and present challenges for molecular PAI.
References
More filters
Journal ArticleDOI

Optical coherence tomography

TL;DR: OCT as discussed by the authors uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way analogous to ultrasonic pulse-echo imaging.
Journal ArticleDOI

Two-Photon Laser Scanning Fluorescence Microscopy

TL;DR: The fluorescence emission increased quadratically with the excitation intensity so that fluorescence and photo-bleaching were confined to the vicinity of the focal plane as expected for cooperative two-photon excitation.
Journal ArticleDOI

Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy

TL;DR: Emerging evidence supporting an alternative hypothesis is reviewed—that certain antiangiogenic agents can also transiently “normalize” the abnormal structure and function of tumor vasculature to make it more efficient for oxygen and drug delivery.
Journal ArticleDOI

Optical Coherence Tomography

TL;DR: The optical coherence tomograph is a new, noninvasive technical device that can obtain cross-sectional, high-resolution images-optical coherencetomographs (OCT)-of the retina that permits an accurate evaluation of various macular and chorioretinal pathologies and the early detection of glaucomatous damage.
Journal ArticleDOI

Deep tissue two-photon microscopy

TL;DR: Fundamental concepts of nonlinear microscopy are reviewed and conditions relevant for achieving large imaging depths in intact tissue are discussed.
Related Papers (5)