scispace - formally typeset
Journal ArticleDOI

Heavy-element fission barriers

Reads0
Chats0
TLDR
In this paper, the authors presented calculations of fission properties for heavy elements based on the macroscopic-microscopic finite-range liquid-drop model with a 2002 parameter set.
Abstract
We present calculations of fission properties for heavy elements. The calculations are based on the macroscopic-microscopic finite-range liquid-drop model with a 2002 parameter set. For each nucleus we have calculated the potential energy in three different shape parametrizations: (1) for 5 009 325 different shapes in a five-dimensional deformation space given by the three-quadratic-surface parametrization, (2) for 10 850 different shapes in a three-dimensional deformation space spanned by epsilon(2), epsilon(4), and gamma in the Nilsson perturbed-spheroid parametrization, supplemented by a densely spaced grid in epsilon(2), epsilon(3), epsilon(4), and epsilon(6) for axially symmetric deformations in the neighborhood of the ground state, and (3) an axially symmetric multipole expansion of the shape of the nuclear surface using beta(2), beta(3), beta(4), and beta(6) for intermediate deformations. For a fissioning system, it is always possible to define uniquely one saddle or fission threshold on the optimum trajectory between the ground state and separated fission fragments. We present such calculated barrier heights for 1585 nuclei from Z=78 to Z=125. Traditionally, actinide barriers have been characterized in terms of a "double-humped" structure. Following this custom we present calculated energies of the first peak, second minimum, and second peak in the barrier for 135 actinide nuclei from Th to Es. However, for some of these nuclei which exhibit a more complex barrier structure, there is no unique way to extract a double-humped structure from the calculations. We give examples of such more complex structures, in particular the structure of the outer barrier region near Th-232 and the occurrence of multiple fission modes. Because our complete results are too extensive to present in a paper of this type, our aim here is limited: (1) to fully present our model and the methods for determining the structure of the potential-energy surface, (2) to present fission thresholds for a large number of heavy elements, (3) to compare our results with the two-humped barrier structure deduced from experiment for actinide nuclei, and (4) to compare to additional fission-related data and other fission models. . (Less)

read more

Citations
More filters
Journal ArticleDOI

Nuclear ground-state masses and deformations: FRDM(2012)

TL;DR: In this article, the atomic mass excesses and binding energies, ground-state shell-plus-pairing corrections, ground state microscopic corrections, and nuclear ground state deformations of 9318 nuclei ranging from 16O to A = 339 were tabulated.
Journal ArticleDOI

General Description of Fission Observables: GEF Model Code

TL;DR: The GEF model as discussed by the authors describes the observables for spontaneous fission, neutron-induced fission and, more generally, for fission of a compound nucleus from any other entrance channel, with given excitation energy and angular momentum.
Journal ArticleDOI

Nuclear energy density optimization: Large deformations

TL;DR: In this paper, a new Skyrme-like energy density suitable for studies of strongly elongated nuclei has been determined in the framework of the Hartree-Fock-Bogoliubov theory using the recently developed model-based, derivative-free optimization algorithm POUNDerS.
Journal ArticleDOI

Radioactive decays at limits of nuclear stability

TL;DR: A review of the decay modes occurring close to the limits of stability is presented in this paper, where the experimental methods used to produce, identify, and detect new species and their radiation are discussed.
References
More filters
Journal ArticleDOI

Watersheds in digital spaces: an efficient algorithm based on immersion simulations

TL;DR: A fast and flexible algorithm for computing watersheds in digital gray-scale images is introduced, based on an immersion process analogy, which is reported to be faster than any other watershed algorithm.
Journal ArticleDOI

Nuclear ground state masses and deformations

TL;DR: In this paper, the atomic mass excesses and nuclear ground-state deformations of 8979 nuclei ranging from 16O to A = 339 were tabulated based on the finite-range droplet macroscopic model and the folded-Yukawa single-particle microscopic model.
Journal ArticleDOI

Shell effects in nuclear masses and deformation energies

TL;DR: In this paper, the authors calculate the shell-model correction to the liquid drop energy of the nucleus as a function of the occupation number and deformation, and show a strong correlation between the shell correction and nucleon level density at the Fermi energy.
Journal ArticleDOI

The Mechanism of nuclear fission

TL;DR: On the basis of the liquid drop model of atomic nuclei, an account of the mechanism of nuclear fission is given in this article, where conclusions are drawn regarding the variation from nucleus to nucleus of the critical energy required for fission, and regarding the dependence of fission cross section for a given nucleus on energy of the exciting agency.
Related Papers (5)