scispace - formally typeset
Journal ArticleDOI

Heterogeneous cellular networks: From theory to practice

Reads0
Chats0
TLDR
New theoretical models for understanding the heterogeneous cellular networks of tomorrow are discussed, and the practical constraints and challenges that operators must tackle in order for these networks to reach their potential are discussed.
Abstract
The proliferation of internet-connected mobile devices will continue to drive growth in data traffic in an exponential fashion, forcing network operators to dramatically increase the capacity of their networks. To do this cost-effectively, a paradigm shift in cellular network infrastructure deployment is occurring away from traditional (expensive) high-power tower-mounted base stations and towards heterogeneous elements. Examples of heterogeneous elements include microcells, picocells, femtocells, and distributed antenna systems (remote radio heads), which are distinguished by their transmit powers/ coverage areas, physical size, backhaul, and propagation characteristics. This shift presents many opportunities for capacity improvement, and many new challenges to co-existence and network management. This article discusses new theoretical models for understanding the heterogeneous cellular networks of tomorrow, and the practical constraints and challenges that operators must tackle in order for these networks to reach their potential.

read more

Citations
More filters
Posted Content

On Modeling Heterogeneous Wireless Networks Using Non-Poisson Point Processes

TL;DR: This work uses massive multiple-input multiple-output (MIMO) to understand the impact of spatial correlation; it uses the random medium access protocol to examine the temporal correlation; and it uses cooperative relay networks to illustrate the spatial-temporal correlation.
Posted Content

Optimal Caching and User Association in Cache-enabled Heterogeneous Wireless Networks

TL;DR: In this paper, the authors considered the optimal caching and user association to minimize the total time to satisfy the average demands in cached-enabled Hetnets with wireless backhaul and formulated the problem as a mixed discrete-continuous optimization for given bandwidth and cache resources.
Dissertation

The Design of Novel Pattern Reconfigurable Antennas for Mobile Networks

Yingjie You
TL;DR: This research shows that, as a result of an increasing number of antenna elements in an elevation direction, network capacity can be increased along with the optimum tilt angle, and suggests that a high gain antenna array in a cellular mobile network can be potential for large site deployment and fewer installations.
Journal ArticleDOI

Stability of Power Control in Multiple Coexisting Wireless Networks: An $\mathscr {L}_{2}$ Small-Gain Perspective

TL;DR: An analytical framework is developed that is capable of utilizing the small-gain theorem to show the considered power control is bounded-input bounded-output (BIBO) stable in the sense of the gain if proper sufficient conditions are satisfied.
Journal ArticleDOI

An efficient interference mitigation approach via quasi-access in two-tier macro-femto heterogeneous networks

TL;DR: A novel quasi‐access strategy is proposed, which allows the interfering MUE to connect with the interfered femtocell access point (FAP) while only via UL, which can significantly alleviate the UL interference at the FAP as well as its neighbors, in the meantime, benefit the macro‐tier.
References
More filters
Journal ArticleDOI

Femtocell networks: a survey

TL;DR: The technical and business arguments for femtocells are overview and the state of the art on each front is described and the technical challenges facing femtocell networks are described and some preliminary ideas for how to overcome them are given.
Journal ArticleDOI

Modeling and Analysis of K-Tier Downlink Heterogeneous Cellular Networks

Abstract: Cellular networks are in a major transition from a carefully planned set of large tower-mounted base-stations (BSs) to an irregular deployment of heterogeneous infrastructure elements that often additionally includes micro, pico, and femtocells, as well as distributed antennas. In this paper, we develop a tractable, flexible, and accurate model for a downlink heterogeneous cellular network (HCN) consisting of K tiers of randomly located BSs, where each tier may differ in terms of average transmit power, supported data rate and BS density. Assuming a mobile user connects to the strongest candidate BS, the resulting Signal-to-Interference-plus-Noise-Ratio (SINR) is greater than 1 when in coverage, Rayleigh fading, we derive an expression for the probability of coverage (equivalently outage) over the entire network under both open and closed access, which assumes a strikingly simple closed-form in the high SINR regime and is accurate down to -4 dB even under weaker assumptions. For external validation, we compare against an actual LTE network (for tier 1) with the other K-1 tiers being modeled as independent Poisson Point Processes. In this case as well, our model is accurate to within 1-2 dB. We also derive the average rate achieved by a randomly located mobile and the average load on each tier of BSs. One interesting observation for interference-limited open access networks is that at a given \sinr, adding more tiers and/or BSs neither increases nor decreases the probability of coverage or outage when all the tiers have the same target-SINR.
Journal ArticleDOI

Heterogeneous Cellular Networks with Flexible Cell Association: A Comprehensive Downlink SINR Analysis

TL;DR: A tractable framework for SINR analysis in downlink heterogeneous cellular networks (HCNs) with flexible cell association policies is developed and the average ergodic rate of the typical user, and the minimum average users throughput - the smallest value among the average user throughputs supported by one cell in each tier is derived.
Journal ArticleDOI

LTE-advanced: next-generation wireless broadband technology [Invited Paper]

TL;DR: An overview of the techniques being considered for LTE Release 10 (aka LTEAdvanced) is discussed, which includes bandwidth extension via carrier aggregation to support deployment bandwidths up to 100 MHz, downlink spatial multiplexing including single-cell multi-user multiple-input multiple-output transmission and coordinated multi point transmission, and heterogeneous networks with emphasis on Type 1 and Type 2 relays.
Journal ArticleDOI

Interference coordination and cancellation for 4G networks

TL;DR: Viable approaches include the use of power control, opportunistic spectrum access, intra and inter-base station interference cancellation, adaptive fractional frequency reuse, spatial antenna techniques such as MIMO and SDMA, and adaptive beamforming, as well as recent innovations in decoding algorithms.
Related Papers (5)