scispace - formally typeset
Journal ArticleDOI

LTE-advanced: next-generation wireless broadband technology [Invited Paper]

01 Jun 2010-IEEE Wireless Communications (IEEE Press)-Vol. 17, Iss: 3, pp 10-22

...read more


Citations
More filters
Journal ArticleDOI

[...]

TL;DR: An overview of the Internet of Things with emphasis on enabling technologies, protocols, and application issues, and some of the key IoT challenges presented in the recent literature are provided and a summary of related research work is provided.
Abstract: This paper provides an overview of the Internet of Things (IoT) with emphasis on enabling technologies, protocols, and application issues. The IoT is enabled by the latest developments in RFID, smart sensors, communication technologies, and Internet protocols. The basic premise is to have smart sensors collaborate directly without human involvement to deliver a new class of applications. The current revolution in Internet, mobile, and machine-to-machine (M2M) technologies can be seen as the first phase of the IoT. In the coming years, the IoT is expected to bridge diverse technologies to enable new applications by connecting physical objects together in support of intelligent decision making. This paper starts by providing a horizontal overview of the IoT. Then, we give an overview of some technical details that pertain to the IoT enabling technologies, protocols, and applications. Compared to other survey papers in the field, our objective is to provide a more thorough summary of the most relevant protocols and application issues to enable researchers and application developers to get up to speed quickly on how the different protocols fit together to deliver desired functionalities without having to go through RFCs and the standards specifications. We also provide an overview of some of the key IoT challenges presented in the recent literature and provide a summary of related research work. Moreover, we explore the relation between the IoT and other emerging technologies including big data analytics and cloud and fog computing. We also present the need for better horizontal integration among IoT services. Finally, we present detailed service use-cases to illustrate how the different protocols presented in the paper fit together to deliver desired IoT services.

4,809 citations


Cites background from "LTE-advanced: next-generation wirel..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: This paper considers transmit precoding and receiver combining in mmWave systems with large antenna arrays and develops algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware.
Abstract: Millimeter wave (mmWave) signals experience orders-of-magnitude more pathloss than the microwave signals currently used in most wireless applications and all cellular systems. MmWave systems must therefore leverage large antenna arrays, made possible by the decrease in wavelength, to combat pathloss with beamforming gain. Beamforming with multiple data streams, known as precoding, can be used to further improve mmWave spectral efficiency. Both beamforming and precoding are done digitally at baseband in traditional multi-antenna systems. The high cost and power consumption of mixed-signal devices in mmWave systems, however, make analog processing in the RF domain more attractive. This hardware limitation restricts the feasible set of precoders and combiners that can be applied by practical mmWave transceivers. In this paper, we consider transmit precoding and receiver combining in mmWave systems with large antenna arrays. We exploit the spatial structure of mmWave channels to formulate the precoding/combining problem as a sparse reconstruction problem. Using the principle of basis pursuit, we develop algorithms that accurately approximate optimal unconstrained precoders and combiners such that they can be implemented in low-cost RF hardware. We present numerical results on the performance of the proposed algorithms and show that they allow mmWave systems to approach their unconstrained performance limits, even when transceiver hardware constraints are considered.

2,426 citations


Cites background from "LTE-advanced: next-generation wirel..."

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: A general framework to evaluate the coverage and rate performance in mmWave cellular networks is proposed, and the results show that dense mmWave networks can achieve comparable coverage and much higher data rates than conventional UHF cellular systems, despite the presence of blockages.
Abstract: Millimeter wave (mmWave) holds promise as a carrier frequency for fifth generation cellular networks. Because mmWave signals are sensitive to blockage, prior models for cellular networks operated in the ultra high frequency (UHF) band do not apply to analyze mmWave cellular networks directly. Leveraging concepts from stochastic geometry, this paper proposes a general framework to evaluate the coverage and rate performance in mmWave cellular networks. Using a distance-dependent line-of-site (LOS) probability function, the locations of the LOS and non-LOS base stations are modeled as two independent non-homogeneous Poisson point processes, to which different path loss laws are applied. Based on the proposed framework, expressions for the signal-to-noise-and-interference ratio (SINR) and rate coverage probability are derived. The mmWave coverage and rate performance are examined as a function of the antenna geometry and base station density. The case of dense networks is further analyzed by applying a simplified system model, in which the LOS region of a user is approximated as a fixed LOS ball. The results show that dense mmWave networks can achieve comparable coverage and much higher data rates than conventional UHF cellular systems, despite the presence of blockages. The results suggest that the cell size to achieve the optimal SINR scales with the average size of the area that is LOS to a user.

1,119 citations


Cites background from "LTE-advanced: next-generation wirel..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: New theoretical models for understanding the heterogeneous cellular networks of tomorrow are discussed, and the practical constraints and challenges that operators must tackle in order for these networks to reach their potential are discussed.
Abstract: The proliferation of internet-connected mobile devices will continue to drive growth in data traffic in an exponential fashion, forcing network operators to dramatically increase the capacity of their networks. To do this cost-effectively, a paradigm shift in cellular network infrastructure deployment is occurring away from traditional (expensive) high-power tower-mounted base stations and towards heterogeneous elements. Examples of heterogeneous elements include microcells, picocells, femtocells, and distributed antenna systems (remote radio heads), which are distinguished by their transmit powers/ coverage areas, physical size, backhaul, and propagation characteristics. This shift presents many opportunities for capacity improvement, and many new challenges to co-existence and network management. This article discusses new theoretical models for understanding the heterogeneous cellular networks of tomorrow, and the practical constraints and challenges that operators must tackle in order for these networks to reach their potential.

878 citations


Cites background from "LTE-advanced: next-generation wirel..."

  • [...]

Journal ArticleDOI

[...]

TL;DR: An overview on the key issues that arise in the design of a resource allocation algorithm for LTE networks is provided, intended for a wide range of readers as it covers the topic from basics to advanced aspects.
Abstract: Future generation cellular networks are expected to provide ubiquitous broadband access to a continuously growing number of mobile users. In this context, LTE systems represent an important milestone towards the so called 4G cellular networks. A key feature of LTE is the adoption of advanced Radio Resource Management procedures in order to increase the system performance up to the Shannon limit. Packet scheduling mechanisms, in particular, play a fundamental role, because they are responsible for choosing, with fine time and frequency resolutions, how to distribute radio resources among different stations, taking into account channel condition and QoS requirements. This goal should be accomplished by providing, at the same time, an optimal trade-off between spectral efficiency and fairness. In this context, this paper provides an overview on the key issues that arise in the design of a resource allocation algorithm for LTE networks. It is intended for a wide range of readers as it covers the topic from basics to advanced aspects. The downlink channel under frequency division duplex configuration is considered as object of our study, but most of the considerations are valid for other configurations as well. Moreover, a survey on the most recent techniques is reported, including a classification of the different approaches presented in literature. Performance comparisons of the most well-known schemes, with particular focus on QoS provisioning capabilities, are also provided for complementing the described concepts. Thus, this survey would be useful for readers interested in learning the basic concepts before going into the details of a particular scheduling strategy, as well as for researchers aiming at deepening more specific aspects.

748 citations


References
More filters
Proceedings ArticleDOI

[...]

01 Sep 2006
TL;DR: A preliminary look at the air interface for Evolved UTRA (E-UTRA) and associated key technologies required to reach its design objectives are provided.
Abstract: With the emergence of packet-based wireless broadband systems such as 802.16e, it is evident that a comprehensive evolution of the universal mobile telecommunications system specifications is required to remain competitive. As a result, work has begun on long term evolution (LTE) of the UMTS terrestrial radio access and radio access network aimed for commercial deployment in 2010. Goals for the evolved system include support for improved system capacity and coverage, high peak data rates, low latency, reduced operating costs, multi-antenna support, flexible bandwidth operations and seamless integration with existing systems. To reach these goals, a new design for the air interface is envisioned. This paper provides a preliminary look at the air interface for Evolved UTRA (E-UTRA) and associated key technologies required to reach its design objectives. Initial E-UTRA system performance results show a 2 to 3x improvement over a reference Rel-6 UMTS system configuration [1, 2] for both uplink and downlink.

30 citations

Proceedings ArticleDOI

[...]

24 Oct 2008
TL;DR: The proposed channel estimation technique is shown to have significant gains in performance compared to other well known channel estimation techniques such as the maximum-likelihood (ML) and the inverse fast Fourier transform (IFFT) channel estimation methods.
Abstract: The performance of the uplink physical channel of the 3GPP LTE system is considered in this paper. Assuming a single user spatial division multiple access transmission scheme, where users' signals are transmitted over different subcarriers, a low complexity channel estimation technique is proposed for the physical uplink shared channel (PUSCH). The proposed channel estimation technique is shown to have significant gains in performance compared to other well known channel estimation techniques such as the maximum-likelihood (ML) and the inverse fast Fourier transform (IFFT) channel estimation methods [5]. Simulation results for different channel models and modulation and coding schemes (MCS) using incremental redundancy (IR) based hybrid automatic repeat request (HARQ) operation are also shown. Finally, a robust detection scheme is proposed for the physical uplink control channel (PUCCH) and simulation results are summarized.

10 citations


"LTE-advanced: next-generation wirel..." refers methods in this paper

  • [...]



Trending Questions (1)
What is the difference between LTE and FIOS Internet?

LTE-Advanced (also known as LTE Release 10) significantly enhances the existing LTE Release 8 and supports much higher peak rates, higher throughput and coverage, and lower latencies, resulting in a better user experience.