scispace - formally typeset
Open AccessJournal ArticleDOI

Hierarchical Organization of Modularity in Metabolic Networks

TLDR
It is shown that the metabolic networks of 43 distinct organisms are organized into many small, highly connected topologic modules that combine in a hierarchical manner into larger, less cohesive units, with their number and degree of clustering following a power law.
Abstract
Spatially or chemically isolated functional modules composed of several cellular components and carrying discrete functions are considered fundamental building blocks of cellular organization, but their presence in highly integrated biochemical networks lacks quantitative support Here, we show that the metabolic networks of 43 distinct organisms are organized into many small, highly connected topologic modules that combine in a hierarchical manner into larger, less cohesive units, with their number and degree of clustering following a power law Within Escherichia coli, the uncovered hierarchical modularity closely overlaps with known metabolic functions The identified network architecture may be generic to system-level cellular organization

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Random graphs with clustering.

TL;DR: It is shown how standard random-graph models can be generalized to incorporate clustering and give exact solutions for various properties of the resulting networks, including sizes of network components, size of the giant component if there is one, position of the phase transition at which the giant components forms, and position ofThe phase transition for percolation on the network.
Journal ArticleDOI

MicroRNAs and complex diseases: from experimental results to computational models.

TL;DR: Twenty state-of-the-art computational models of predicting miRNA-disease associations from different perspectives are reviewed, including five feasible and important research schemas, and future directions for further development of computational models are summarized.
Journal ArticleDOI

Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity

TL;DR: It is argued that "balanced gene drive" is a sufficient explanation for the trend that the maximums of morphological complexity have gone up, and not down, in both plant and animal eukaryotic lineages.
Journal ArticleDOI

High-Betweenness Proteins in the Yeast Protein Interaction Network

TL;DR: It is found that proteins with high betweenness are more likely to be essential and that evolutionary age of proteins is positively correlated with betweenness, which suggests the existence of some modular organization of the network, and that the high-betweenness, low-connectivity proteins may act as important links between these modules.
Journal ArticleDOI

Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications

TL;DR: In this paper, the authors introduce a structural metric that allows us to differentiate between simple, connected graphs having an identical degree sequence, which is of particular interest when that sequence satisfies a power law relationship.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Journal ArticleDOI

Statistical mechanics of complex networks

TL;DR: In this paper, a simple model based on the power-law degree distribution of real networks was proposed, which was able to reproduce the power law degree distribution in real networks and to capture the evolution of networks, not just their static topology.
Journal ArticleDOI

Cluster analysis and display of genome-wide expression patterns

TL;DR: A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression, finding in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function.
Journal ArticleDOI

Community structure in social and biological networks

TL;DR: This article proposes a method for detecting communities, built around the idea of using centrality indices to find community boundaries, and tests it on computer-generated and real-world graphs whose community structure is already known and finds that the method detects this known structure with high sensitivity and reliability.
Related Papers (5)