scispace - formally typeset
Journal ArticleDOI

High Reliability and Efficiency Single-Phase Transformerless Inverter for Grid-Connected Photovoltaic Systems

Reads0
Chats0
TLDR
In this article, a high-reliability single-phase transformerless grid-connected inverter that utilizes superjunction MOSFETs to achieve high efficiency for photovoltaic applications is presented.
Abstract
This paper presents a high-reliability single-phase transformerless grid-connected inverter that utilizes superjunction MOSFETs to achieve high efficiency for photovoltaic applications. The proposed converter utilizes two split ac-coupled inductors that operate separately for positive and negative half grid cycles. This eliminates the shoot-through issue that is encountered by traditional voltage source inverters, leading to enhanced system reliability. Dead time is not required at both the high-frequency pulsewidth modulation switching commutation and the grid zero-crossing instants, improving the quality of the output ac-current and increasing the converter efficiency. The split structure of the proposed inverter does not lead itself to the reverse-recovery issues for the main power switches and as such superjunction MOSFETs can be utilized without any reliability or efficiency penalties. Since MOSFETs are utilized in the proposed converter high efficiency can be achieved even at light load operations achieving a high California energy commission (CEC) or European union efficiency of the converter system. It also has the ability to operate at higher switching frequencies while maintaining high efficiency. The higher operating frequencies with high efficiency enables reduced cooling requirements and results in system cost savings by shrinking passive components. With two additional ac-side switches conducting the currents during the freewheeling phases, the photovoltaic array is decoupled from the grid. This reduces the high-frequency common-mode voltage leading to minimized ground loop leakage current. The operation principle, common-mode characteristic and design considerations of the proposed transformerless inverter are illustrated. The total losses of the power semiconductor devices of several existing transformerless inverters which utilize MOSFETs as main switches are evaluated and compared. The experimental results with a 5 kW prototype circuit show 99.0% CEC efficiency and 99.3% peak efficiency with a 20 kHz switching frequency. The high reliability and efficiency of the proposed converter makes it very attractive for single-phase transformerless photovoltaic inverter applications.

read more

Citations
More filters
Journal ArticleDOI

Common Mode Voltage Reduction in a Single-Phase Quasi Z-Source Inverter for Transformerless Grid-Connected Solar PV Applications

TL;DR: A modified pulsewidth modulation (PWM) technique to control the quasi-Z-source inverter, along with two extra semiconductor switches, to reduce the common mode current is proposed and offers an efficient solution for grid integration of solar photovoltaic systems.
Journal ArticleDOI

Single phase transformerless inverter topology with reduced leakage current for grid connected photovoltaic system

TL;DR: In this article, a reduced leakage current CMV clamped topology is proposed which can eliminate leakage current and capable of injecting reactive power into the grid, which can also be verified in Matlab/Simulink environment.
Proceedings ArticleDOI

Power electronics - Key technology for renewable energy systems - Status and future

TL;DR: In this article, the authors explored the future trends in power electronics for renewable energy conversion systems, including the development, implementation, power converter technologies, control of the systems, and synchronization.
Proceedings ArticleDOI

A hybrid resonant converter utilizing a bidirectional GaN AC switch for high-efficiency PV applications

TL;DR: In this paper, the authors proposed a novel isolated hybrid resonant converter with smooth transition between multiple operating modes. But the converter's topology and operating modes are not discussed, and closed-loop input-voltage controllers are designed for the different operating modes and a smooth transition technique is introduced using a two-carrier modulation scheme.
Journal ArticleDOI

Comparative analysis of single phase transformerless inverter topologies for grid connected PV system

TL;DR: In this paper, the authors reviewed, analyzed and compared several recently published topologies with their operation principles with their switching waveforms, and compared the performances of the topologies on the basis of CMV, leakage current, semiconductor device losses, efficiency and total harmonic distortion.
References
More filters
Journal ArticleDOI

A review of single-phase grid-connected inverters for photovoltaic modules

TL;DR: In this article, the authors focus on inverter technologies for connecting photovoltaic (PV) modules to a single-phase grid and categorize the inverters into four classifications: 1) the number of power processing stages in cascade; 2) the type of power decoupling between the PV module(s) and the single phase grid; 3) whether they utilizes a transformer (either line or high frequency) or not; and 4) the kind of grid-connected power stage.
Journal ArticleDOI

A Review of the Single Phase Photovoltaic Module Integrated Converter Topologies With Three Different DC Link Configurations

TL;DR: In this paper, a topology study of the PV MICs in the power range below 500 W and covers most topologies recently proposed for MIC applications is presented, where the MIC topologies are classified into three different arrangements based on the dc link configurations.
Journal ArticleDOI

Topologies of single-phase inverters for small distributed power generators: an overview

TL;DR: In this paper, an overview of single-phase inverters developed for small distributed power generators is presented, compared, and evaluated against the requirements of power decoupling and dual-grounding, the capabilities for grid-connected or/and stand-alone operations, and specific DG applications.
Journal ArticleDOI

A New High-Efficiency Single-Phase Transformerless PV Inverter Topology

TL;DR: This paper proposes a new topology, based on the H-bridge with a new ac bypass circuit consisting of a diode rectifier and a switch with clamping to the dc midpoint, which achieves high conversion efficiency and low leakage current.
Journal ArticleDOI

Transformerless Inverter for Single-Phase Photovoltaic Systems

TL;DR: In this article, the authors proposed a new high-efficiency topology that generates no varying common-mode voltage and requires the same low-input voltage as the bipolar PWM full bridge.
Related Papers (5)