scispace - formally typeset
Journal ArticleDOI

High-Temperature Behavior and Surface Chemistry of Carbide MXenes Studied by Thermal Analysis

TLDR
In this paper, the surface terminations of three transition metal carbide MXenes (Ti3C2Tx, Mo2CTx, and Nb2CTX) were investigated up to 1500 °C under a He atmosphere.
Abstract
Two-dimensional (2D) transition-metal carbides and nitrides (MXenes) have attracted significant attention due to their electronic, electrochemical, chemical, and optical properties. However, understanding of their thermal stability is still lacking. To date, MXenes are synthesized via top-down wet chemical etching, which intrinsically results in surface terminations. Here, we provide detailed insight into the surface terminations of three carbide MXenes (Ti3C2Tx, Mo2CTx, and Nb2CTx) by performing thermal gravimetric analysis with mass spectrometry analysis (TA–MS) up to 1500 °C under a He atmosphere. This specific technique enables probing surface terminations including hydroxyl (−OH), oxy (═O), and fluoride (−F) and intercalated species, such as salts and structural water. The MXene hydrophilicity depends on the type of etching (hydrofluoric acid concentration and/or mixed acid composition) and subsequent delamination conditions. We show that the amount of structural water in Ti3C2Tx increases with decre...

read more

Citations
More filters
Journal ArticleDOI

The world of two-dimensional carbides and nitrides (MXenes)

TL;DR: A forward-looking review of the field of 2D carbides and nitrides can be found in this article, where the challenges to be addressed and research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies are discussed.
Journal ArticleDOI

Scalable Manufacturing of Free‐Standing, Strong Ti 3 C 2 T x MXene Films with Outstanding Conductivity

TL;DR: A scalable method is shown for the fabrication of strong and highly conducting pure MXene films containing highly aligned large MXene flakes that provide an effective route for producing large-area, high-strength, and high-electrical-conductivity MXene-based films for future electronic applications.
Journal ArticleDOI

Beyond Ti3C2Tx: MXenes for Electromagnetic Interference Shielding.

TL;DR: This work shows that many members of the large MXene family can be used for EMI shielding, contributing to designing ultrathin, flexible, and multifunctional E MI shielding films benefitting from specific characteristics of individual MXenes.
Journal ArticleDOI

Synthesis of Mo4VAlC4 MAX Phase and Two-Dimensional Mo4VC4 MXene with Five Atomic Layers of Transition Metals

TL;DR: This study demonstrates the existence of an additional subfamily of M5X4Tx MXenes as well as a twinned structure, allowing for a wider range of 2D structures and compositions for more control over properties, which could lead to many different applications.
References
More filters
Journal ArticleDOI

Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti 3 AlC 2

TL;DR: 2D nanosheets, composed of a few Ti 3 C 2 layers and conical scrolls, produced by the room temperature exfoliation of Ti 3 AlC 2 in hydrofl uoric acid are reported, which opens a door to the synthesis of a large number of other 2D crystals.
Journal ArticleDOI

2D metal carbides and nitrides (MXenes) for energy storage

TL;DR: More than twenty 2D carbides, nitrides and carbonitrides of transition metals (MXenes) have been synthesized and studied, and dozens more predicted to exist.
Journal ArticleDOI

Electromagnetic interference shielding with 2D transition metal carbides (MXenes)

TL;DR: The mechanical flexibility and easy coating capability offered by MXenes and their composites enable them to shield surfaces of any shape while providing high EMI shielding efficiency.
Journal ArticleDOI

Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene)

TL;DR: Two-dimensional transition metal carbides, carbonitrides, and nitrides (MXenes) were discovered in 2011 and more than 20 different compositions have been synthesized by the selective etching of MAX phase and other precursors and many more theoretically predicted as mentioned in this paper.
Journal ArticleDOI

Flexible and conductive MXene films and nanocomposites with high capacitance

TL;DR: This first report (to the authors' knowledge) on MXene composites of any kind, shows that adding polymer binders/spacers between atomically thin MXenes layers or reinforcing polymers with MXenes results in composite films that have excellent flexibility, good tensile and compressive strengths, and electrical conductivity that can be adjusted over a wide range.
Related Papers (5)
Trending Questions (3)
How do MXenes behave mechanically under high temperatures, corrosive environments, or irradiation?

The paper does not provide information on the mechanical behavior of MXenes under high temperatures, corrosive environments, or irradiation.

What experimental methods are employed to measure the thermal properties of MXenes?

Thermal gravimetric analysis with mass spectrometry (TA-MS) is used to measure the thermal properties of MXenes.

How do characterization testing techniques of thermal properties provide insights into the thermal behavior of MXenes?

Thermal gravimetric analysis with mass spectrometry provides insights into the thermal behavior of MXenes by analyzing weight losses and release of gases at different temperatures.