scispace - formally typeset
Journal ArticleDOI

Humic Substances as a Mediator for Microbially Catalyzed Metal Reduction

TLDR
The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe (III) oxides was investigated in this article.
Abstract
The potential for humic substances to serve as a terminal electron acceptor in microbial respiration and to function as an electron shuttle between Fe(III)-reducing microorganisms and insoluble Fe(III) oxides was investigated. The Fe(III)-reducing microorganism Geobacter metallireducens conserved energy to support growth from electron transport to humics as evidenced by continued oxidation of acetate to carbon dioxide after as many as nine transfers in a medium with acetate as the electron donor and soil humic acids as the electron acceptor. Growth of G. metallireducens with poorly crystalline Fe(III) oxide as the electron acceptor was greatly stimulated by the addition of as little as 100 μM of the humics analog, anthraquinone-2,6-disulfonate. Other quinones investigated, including lawsone, menadione, and anthraquinone-2-sulfonate, also stimulated Fe(III) oxide reduction. A wide phylogenetic diversity of microorganisms capable of Fe(III) reduction were also able to transfer electrons to humics. Microorganisms which can not reduce Fe(III) could not reduce humics. Humics stimulated the reduction of structural Fe(III) in clay and the crystalline Fe(III) forms, goethite and hematite. These results demonstrate that electron shuttling between Fe(III)-reducing microorganisms and Fe(III) via humics not only accelerates the microbial reduction of poorly crystalline Fe(III) oxide, but also can facilitate the reduction of Fe(III) forms that are not typically reduced by microorganisms in the absence of humics. Addition of humic substances to enhance electron shuttling between Fe(III)-reducing microorganisms and Fe(III) oxides may be a useful strategy to stimulate the remediation of soils and sediments contaminated with organic or metal pollutants. Huminstoffe als Vermittler bei der mikrobiell katalysierten Metallreduktion Es wurde untersucht, inwieweit Huminstoffe als terminale Elektronenakzeptoren bei der mikrobiellen Atmung und als Vermittler bei der Elektronenubertragung zwischen Fe(III)-reduzierenden Mikroorganismen und unloslichen Fe(III)-oxiden fungieren konnen. Das Fe(III)-reduzierende Bakterium Geobacter metallireducens gewinnt Energie zum Wachstum aus der Elektronenubertragung auf Huminstoffe. Das wurde offensichtlich, als nach 9 aufeinanderfolgenden Transfers des Bakteriums auf frisches Medium mit Acetat als Elektronendonor und Boden-Huminstoff als Elektronenakzeptor seine Fahigkeit zur Oxidation von Acetat zu CO2 erhalten blieb. Das Wachstum von G. metallireducens mit niedrigkristallinem Fe(III)-oxid als Elektronenakzeptor konnte durch den Zusatz des Huminstoff-Analogen Anthrachinon-2,6-disulfonat bereits in Konzentrationen von 100 μmol/L deutlich stimuliert werden. Auch weitere untersuchte Chinone wie z.B. Lawson (2-Hydroxy-1,4-naphthochinon), Menadion (2-Methyl-1,4-naphthochinon) und Anthrachinon-2-sulfonat stimulierten die Fe(III)-oxid-Reduktion. Eine grose Anzahl phylogenetisch unterschiedlicher Mikroorganismen, die zur Fe(III)-Reduktion befahigt sind, zeigten gleichzeitig die Fahigkeit zum Elektronentransfer auf Huminstoffe. Zur Fe(III)-Reduktion nicht befahigte Mikroorganismen konnten auch Huminstoffe nicht reduzieren. Durch Huminstoffe konnte die Reduktion von Fe(III) stimuliert werden, das in die Struktur von Tonmineralen und in kristalline Formen des Fe(III)-oxids, Goethit und Hamatit, eingebaut ist. Diese Ergebnisse zeigen, das durch die vermittelnde Funktion der Huminstoffe bei der Elektronenubertragung zwischen Fe(III)-reduzierenden Mikroorganismen und Fe(III) nicht nur die mikrobielle Reduktion von niedrigkristallinem Fe(III)-oxid beschleunigt wird, sondern auch die Reduktion von solchen Formen des Fe(III) erleichtert wird, welche im allgemeinen in Abwesenheit von Huminstoffen durch Fe(III)-reduzierende Mikroorganismen nicht reduziert werden. Die Zugabe von Huminstoffen zur Verbesserung der Elektronenubertragung zwischen Fe(III)-reduzierenden Mikroorganismen und Fe(III)-oxiden konnte eine nutzliche Strategie zur Stimulierung der Sanierung von mit organischen oder metallischen Kontaminanten verunreinigten Boden und Sedimenten sein.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Review paper on current technologies for decolourisation of textile wastewaters: Perspectives for anaerobic biotechnology

TL;DR: This paper provides a critical review on the current technologies available for decolourisation of textile wastewaters and it suggests effective and economically attractive alternatives.
Book ChapterDOI

Dissimilatory Fe(III) and Mn(IV) reduction.

TL;DR: The ability to oxidize hydrogen with the reduction of Fe(III) is a highly conserved characteristic of hyperthermophilic microorganisms, most notably those in the Geobacteraceae family as mentioned in this paper.
Journal ArticleDOI

Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium

TL;DR: In this paper, a batch of experiments were conducted with amorphous hydrous ferric oxide (HFO) and the DIRB Shewanella putrefaciens, strain CN32, in well-defined aqueous solutions to investigate the reduction of HFO and formation of biogenic Fe(II) minerals.
Journal ArticleDOI

Quinone Moieties Act as Electron Acceptors in the Reduction of Humic Substances by Humics-Reducing Microorganisms

TL;DR: The possibility that quinones serve as electron-accepting moieties when microorganisms transfer electrons to humic substances was investigated in this paper, where electron spin resonance spectra were consistent with semiquinones as the main organic radicals.
Book ChapterDOI

Bacterial Manganese and Iron Reduction in Aquatic Sediments

TL;DR: The importance of bacteria in the biogeochemical manganese and iron cycles has gained broad appreciation over the past decade, and a large number of bacteria have been isolated that grow with oxidized Mn or Fe as sole terminal electron acceptor.
References
More filters
Book ChapterDOI

The Chemistry of Submerged Soils

TL;DR: In this paper, the chemistry of submerged soils is discussed and the role of lake, estuarine, and ocean sediments as reservoirs of nutrients for aquatic plants and as sinks for terrestrial wastes.
Journal ArticleDOI

Dissimilatory Fe(III) and Mn(IV) reduction.

TL;DR: The physiological characteristics of Geobacter species appear to explain why they have consistently been found to be the predominant Fe(III)- and Mn(IV)-reducing microorganisms in a variety of sedimentary environments.
Journal ArticleDOI

Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

TL;DR: This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe( III), Mn( IV), or Mn (IV) reduction can yield energy for microbial growth.
Journal ArticleDOI

Humic substances as electron acceptors for microbial respiration

TL;DR: In this article, it was shown that some microorganisms found in soils and sediments are able to use humic substances as an electron acceptor for the anaerobic oxidation of organic compounds and hydrogen.
Journal ArticleDOI

Organic matter mineralization with reduction of ferric iron in anaerobic sediments.

TL;DR: Results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter when amorphous ferric oxyhydroxides are available in anaerobic sediments, and the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition.
Related Papers (5)