scispace - formally typeset
Journal ArticleDOI

Humic substances as electron acceptors for microbial respiration

TLDR
In this article, it was shown that some microorganisms found in soils and sediments are able to use humic substances as an electron acceptor for the anaerobic oxidation of organic compounds and hydrogen.
Abstract
HUMIC substances are heterogeneous high-molecular-weight organic materials which are ubiquitous in terrestrial and aquatic environments. They are resistant to microbial degradation1 and thus are not generally considered to be dynamically involved in microbial metabolism, especially in anoxic habitats. However, we show here that some microorganisms found in soils and sediments are able to use humic substances as an electron acceptor for the anaerobic oxidation of organic compounds and hydrogen. This electron transport yields energy to support growth. Microbial humic reduction also enhances the capacity for microorganisms to reduce other, less accessible electron acceptors, such as insoluble Fe(III) oxides, because humic substances can shuttle electrons between the humic-reducing microorganisms and the Fe(III) oxide. The finding that microorganisms can donate electrons to humic acids has important implications for the mechanisms by which microorganisms oxidize both natural and contaminant organics in anaerobic soils and sediments, and suggests a biological source of electrons for humics-mediated reduction of contaminant metals and organics.

read more

Citations
More filters
Journal ArticleDOI

Extracellular electron transfer via microbial nanowires.

TL;DR: Results indicate that the pili of G. sulfurreducens might serve as biological nanowires, transferring electrons from the cell surface to the surface of Fe(iii) oxides, indicating possibilities for other unique cell-surface and cell–cell interactions, and for bioengineering of novel conductive materials.
Journal ArticleDOI

The contentious nature of soil organic matter

TL;DR: It is argued that the available evidence does not support the formation of large-molecular-size and persistent ‘humic substances’ in soils, and instead soil organic matter is a continuum of progressively decomposing organic compounds.
Journal ArticleDOI

A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.

TL;DR: A critical review on the recent advances in MFC research with emphases on MFC configurations and performances is presented.
Journal ArticleDOI

Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction

TL;DR: Biological iron apportionment has been described as one of the most ancient forms of microbial metabolism on Earth, and as a conceivable extraterrestrial metabolism on other iron-mineral-rich planets such as Mars.
References
More filters
Book ChapterDOI

The Chemistry of Submerged Soils

TL;DR: In this paper, the chemistry of submerged soils is discussed and the role of lake, estuarine, and ocean sediments as reservoirs of nutrients for aquatic plants and as sinks for terrestrial wastes.
Journal ArticleDOI

Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese.

TL;DR: This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe( III), Mn( IV), or Mn (IV) reduction can yield energy for microbial growth.
Journal ArticleDOI

Organic matter mineralization with reduction of ferric iron in anaerobic sediments.

TL;DR: Results indicate that iron reduction can outcompete methanogenic food chains for sediment organic matter when amorphous ferric oxyhydroxides are available in anaerobic sediments, and the transfer of electrons from organic matter to ferric iron can be a major pathway for organic matter decomposition.
Journal ArticleDOI

Stimulated Anoxic Biodegradation of Aromatic Hydrocarbons Using Fe(III) Ligands

TL;DR: It is reported that adding organic ligands that bind to Fe(III) dramatically increases its bioavailability, and that in the presence of these ligands, rates of degradation of aromatic hydrocarbons in anoxic aquifer sediments are comparable to those in oxic sediments.
Related Papers (5)