scispace - formally typeset
Journal ArticleDOI

In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten

Reads0
Chats0
TLDR
In situ high-resolution transmission electron microscopy and atomistic simulations show that twinning is the dominant deformation mechanism in nanoscale crystals of BCC tungsten, and find that the competition between twinning and dislocation slip can be mediated by loading orientation, which is attributed to the competing nucleation mechanism of defects in nanoscope BCC crystals.
Abstract
Little is known about the micromechanisms by which deformation twinning occurs in body-centred cubic crystals. An atomic-scale microscopy study now provides new insight, by the in situ testing of tungsten nanowires.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals

TL;DR: In this paper, the authors review recent advances in overcoming this tradeoff, by purposely deploying heterogeneous nanostructures in an otherwise single-phase metal, and advocate this broad vision to help guide future innovations towards a synergy between high strength and high ductility.
Journal ArticleDOI

Structural evolutions of metallic materials processed by severe plastic deformation

TL;DR: In this paper, a comprehensive review on important micro-structural evolutions and major microstructural features induced by SPD processing in single-phase metallic materials with face-centered cubic structures, body-centered cylindrical structures, and hexagonal close-packed structures, as well as in multi-phase alloys is provided.
Journal ArticleDOI

In situ atomistic observation of disconnection-mediated grain boundary migration.

TL;DR: The atomistic mechanism of disconnection-mediated GB migration in different gold nanostructures is revealed using a state-of-art in situ shear testing technique combined with molecular dynamic simulations.
Journal ArticleDOI

An overview of tailoring strain delocalization for strength-ductility synergy

TL;DR: In this paper, the authors proposed the strategy of tailoring strain delocalization to evade long-standing strength-ductility trade-off dilemma, where the achieving of strengthductility synergy depends on the delocalizing of localized strains.
References
More filters
MonographDOI

Mechanical Behavior of Materials

TL;DR: A balanced mechanics-materials approach and coverage of the latest developments in biomaterials and electronic materials, the new edition of this popular text is the most thorough and modern book available for upper-level undergraduate courses on the mechanical behavior of materials as discussed by the authors.
Journal ArticleDOI

Sample dimensions influence strength and crystal plasticity.

TL;DR: Measurements of plastic yielding for single crystals of micrometer-sized dimensions for three different types of metals find that within the tests, the overall sample dimensions artificially limit the length scales available for plastic processes.
Journal ArticleDOI

Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale

TL;DR: An approach to optimize strength and ductility is outlined by identifying three essential structural characteristics for boundaries: coherency with surrounding matrix, thermal and mechanical stability, and smallest feature size finer than 100 nanometers.
Journal ArticleDOI

Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect

TL;DR: In this paper, the authors provide an overview of metal-based material classes whose properties as a function of external size have been investigated and provide a critical discussion on the combined effects of intrinsic and extrinsic sizes on the material deformation behavior.
Journal ArticleDOI

On deformation by twinning

TL;DR: In this article, the authors focus on the distinction between the strain due to complete twinning and the macroscopic strain caused by formation of a thin twin lamella, and the subdivision of the orientation diagram according to the twinning system which can be operated by axial loading is a more complicated one than customarily indicated.
Related Papers (5)