Info-Graphics Retrieval: A Multi-kernel Distance Based Hashing Scheme
19 Dec 2016-pp 288-298
TL;DR: This paper presents a multi-modal document image retrieval framework by learning an optimal fusion of information from text and info-graphics regions and demonstrates the evaluation of the proposed concept on documents collected from various sources.
Abstract: Information retrieval research has shown significant improvement and provided techniques that retrieve documents in image or text form. However, retrieval of multi-modal documents has been given very less attention. We aim to build a system for retrieval of documents with embedded information graphics (Info-graphics). Info-graphics are images of bar charts and line graphs appearing with textual components in magazines, newspapers, and journals. In this paper, we present multi-modal document image retrieval framework by learning an optimal fusion of information from text and info-graphics regions. The evaluation of the proposed concept is demonstrated on documents collected from various sources such as magazines and journals.
References
More filters
20 Jun 2005
TL;DR: It is shown experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection, and the influence of each stage of the computation on performance is studied.
Abstract: We study the question of feature sets for robust visual object recognition; adopting linear SVM based human detection as a test case. After reviewing existing edge and gradient based descriptors, we show experimentally that grids of histograms of oriented gradient (HOG) descriptors significantly outperform existing feature sets for human detection. We study the influence of each stage of the computation on performance, concluding that fine-scale gradients, fine orientation binning, relatively coarse spatial binning, and high-quality local contrast normalization in overlapping descriptor blocks are all important for good results. The new approach gives near-perfect separation on the original MIT pedestrian database, so we introduce a more challenging dataset containing over 1800 annotated human images with a large range of pose variations and backgrounds.
31,952 citations
20 Sep 1999
TL;DR: Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
Abstract: An object recognition system has been developed that uses a new class of local image features. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. These features share similar properties with neurons in inferior temporal cortex that are used for object recognition in primate vision. Features are efficiently detected through a staged filtering approach that identifies stable points in scale space. Image keys are created that allow for local geometric deformations by representing blurred image gradients in multiple orientation planes and at multiple scales. The keys are used as input to a nearest neighbor indexing method that identifies candidate object matches. Final verification of each match is achieved by finding a low residual least squares solution for the unknown model parameters. Experimental results show that robust object recognition can be achieved in cluttered partially occluded images with a computation time of under 2 seconds.
16,989 citations
TL;DR: This article proposes several novel measures that compute the cumulative gain the user obtains by examining the retrieval result up to a given ranked position, and test results indicate that the proposed measures credit IR methods for their ability to retrieve highly relevant documents and allow testing of statistical significance of effectiveness differences.
Abstract: Modern large retrieval environments tend to overwhelm their users by their large output. Since all documents are not of equal relevance to their users, highly relevant documents should be identified and ranked first for presentation. In order to develop IR techniques in this direction, it is necessary to develop evaluation approaches and methods that credit IR methods for their ability to retrieve highly relevant documents. This can be done by extending traditional evaluation methods, that is, recall and precision based on binary relevance judgments, to graded relevance judgments. Alternatively, novel measures based on graded relevance judgments may be developed. This article proposes several novel measures that compute the cumulative gain the user obtains by examining the retrieval result up to a given ranked position. The first one accumulates the relevance scores of retrieved documents along the ranked result list. The second one is similar but applies a discount factor to the relevance scores in order to devaluate late-retrieved documents. The third one computes the relative-to-the-ideal performance of IR techniques, based on the cumulative gain they are able to yield. These novel measures are defined and discussed and their use is demonstrated in a case study using TREC data: sample system run results for 20 queries in TREC-7. As a relevance base we used novel graded relevance judgments on a four-point scale. The test results indicate that the proposed measures credit IR methods for their ability to retrieve highly relevant documents and allow testing of statistical significance of effectiveness differences. The graphs based on the measures also provide insight into the performance IR techniques and allow interpretation, for example, from the user point of view.
4,337 citations
TL;DR: Almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation are surveyed, and the spawning of related subfields are discussed, to discuss the adaptation of existing image retrieval techniques to build systems that can be useful in the real world.
Abstract: We have witnessed great interest and a wealth of promise in content-based image retrieval as an emerging technology. While the last decade laid foundation to such promise, it also paved the way for a large number of new techniques and systems, got many new people involved, and triggered stronger association of weakly related fields. In this article, we survey almost 300 key theoretical and empirical contributions in the current decade related to image retrieval and automatic image annotation, and in the process discuss the spawning of related subfields. We also discuss significant challenges involved in the adaptation of existing image retrieval techniques to build systems that can be useful in the real world. In retrospect of what has been achieved so far, we also conjecture what the future may hold for image retrieval research.
3,433 citations
TL;DR: This survey reviews 100+ recent articles on content-based multimedia information retrieval and discusses their role in current research directions which include browsing and search paradigms, user studies, affective computing, learning, semantic queries, new features and media types, high performance indexing, and evaluation techniques.
Abstract: Extending beyond the boundaries of science, art, and culture, content-based multimedia information retrieval provides new paradigms and methods for searching through the myriad variety of media all over the world. This survey reviews 100p recent articles on content-based multimedia information retrieval and discusses their role in current research directions which include browsing and search paradigms, user studies, affective computing, learning, semantic queries, new features and media types, high performance indexing, and evaluation techniques. Based on the current state of the art, we discuss the major challenges for the future.
1,652 citations