scispace - formally typeset
Open AccessJournal ArticleDOI

Interface-resolved DNS of vertical particulate channel flow in the turbulent regime

Reads0
Chats0
TLDR
In this article, a direct numerical simulation (DNS) study of dilute turbulent particulate flow in a vertical plane channel was conducted, considering thousands of finite-size rigid particles with resolved phase interfaces.
Abstract
We have conducted a direct numerical simulation (DNS) study of dilute turbulent particulate flow in a vertical plane channel, considering thousands of finite-size rigid particles with resolved phase interfaces. The particle diameter corresponds to approximately 11 wall units and their terminal Reynolds number is set to 136. The fluid flow with bulk Reynolds number 2700 is directed upward, which maintains the particles suspended upon average. Two density ratios were simulated, differing by a factor of 4.5. The corresponding Stokes numbers of the two flow cases were O(10) in the near-wall region and O(1) in the outer flow. We have observed the formation of large-scale elongated streak-like structures with streamwise dimensions of the order of 8 channel half-widths and cross-stream dimensions of the order of one half-width. At the same time, we have found no evidence of significant formation of particle clusters, which suggests that the large structures are due to an intrinsic instability of the flow, triggered by the presence of the particles. It was found that the mean fluid velocity profile tends towards a concave shape, and the turbulence intensity as well as the normal stress anisotropy are strongly increased. The effect of varying the Stokes number while maintaining the buoyancy, particle size and volume fraction constant was relatively weak.

read more

Citations
More filters
Journal ArticleDOI

Turbulent Dispersed Multiphase Flow

TL;DR: A review of the current state-of-the-art experimental and computational techniques for turbulent dispersed multiphase flows, their strengths and limitations, and opportunities for the future can be found in this paper.
Journal ArticleDOI

An improved immersed boundary method with direct forcing for the simulation of particle laden flows

TL;DR: It is shown that the basic scheme is inconsistent when moving surfaces are allowed to approach closer than twice the step size, and a remedy is developed based on excluding from the force computation all surface markers whose stencil overlaps with the stencil of a marker located on the surface of a collision partner.
Journal ArticleDOI

Immersed boundary methods for simulating fluid-structure interaction

TL;DR: Different IB approaches for imposing boundary conditions, efficient iterative algorithms for solving the incompressible Navier–Stokes equations in the presence of dynamic immersed boundaries, and strong and loose coupling FSI strategies are summarized and juxtapose.
Journal ArticleDOI

Analyzing preferential concentration and clustering of inertial particles in turbulence

TL;DR: The preferential concentration of inertial particles in turbulent flows has been extensively investigated since the 1960s as discussed by the authors, and the main mathematical analysis techniques which have been developed and implemented up to now to diagnose and characterize the clustering properties of dispersed particles.
Journal ArticleDOI

Anisotropic Particles in Turbulence

TL;DR: Anisotropic particles are common in many industrial and natural turbulent flows as discussed by the authors, and when these particles are small and neutrally buoyant, they follow Lagrangian trajectories while exhibiting rich orientational dynamics from the coupling of their rotation to the velocity gradients of the turbulence field.
References
More filters
Journal Article

Bubbles, Drops, and Particles

TL;DR: In this paper, the authors evaluated the applicability of the standard κ-ϵ equations and other turbulence models with respect to their applicability in swirling, recirculating flows.
Journal ArticleDOI

Turbulence statistics in fully developed channel flow at low reynolds number

TL;DR: In this article, a direct numerical simulation of a turbulent channel flow is performed, where the unsteady Navier-Stokes equations are solved numerically at a Reynolds number of 3300, based on the mean centerline velocity and channel half-width, with about 4 million grid points.
Journal ArticleDOI

The immersed boundary method

TL;DR: This paper is concerned with the mathematical structure of the immersed boundary (IB) method, which is intended for the computer simulation of fluid–structure interaction, especially in biological fluid dynamics.
Journal ArticleDOI

Direct numerical simulation of turbulent channel flow up to Reτ=590

TL;DR: In this paper, numerical simulations of fully developed turbulent channel flow at three Reynolds numbers up to Reτ=590 were reported, and it was noted that the higher Reynolds number simulations exhibit fewer low Reynolds number effects than previous simulations at Reτ = 180.
Journal ArticleDOI

Flow patterns around heart valves: A numerical method

TL;DR: In this paper, the Navier-Stokes equations on a rectangular domain are applied to the simulation of flow around the natural mitral valve of a human heart valve, where the boundary forces are of order h − 1, and because they are sensitive to small changes in boundary configuration, they tend to produce numerical instability.
Related Papers (5)