scispace - formally typeset
Journal ArticleDOI

Learnability and the Vapnik-Chervonenkis dimension

TLDR
This paper shows that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned.
Abstract
Valiant's learnability model is extended to learning classes of concepts defined by regions in Euclidean space En. The methods in this paper lead to a unified treatment of some of Valiant's results, along with previous results on distribution-free convergence of certain pattern recognition algorithms. It is shown that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned. Using this parameter, the complexity and closure properties of learnable classes are analyzed, and the necessary and sufficient conditions are provided for feasible learnability.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Improving Generalization with Active Learning

TL;DR: A formalism for active concept learning called selective sampling is described and it is shown how it may be approximately implemented by a neural network.
Journal ArticleDOI

Learning in the presence of concept drift and hidden contexts

TL;DR: A family of learning algorithms that flexibly react to concept drift and can take advantage of situations where contexts reappear are described, including a heuristic that constantly monitors the system's behavior.
Journal ArticleDOI

The lack of a priori distinctions between learning algorithms

TL;DR: It is shown that one cannot say: if empirical misclassification rate is low, the Vapnik-Chervonenkis dimension of your generalizer is small, and the training set is large, then with high probability your OTS error is small.
Journal ArticleDOI

Computational Methods in Drug Discovery

TL;DR: Computer-aided drug discovery/design methods have played a major role in the development of therapeutically important small molecules for over three decades and theory behind the most important methods and recent successful applications are discussed.
Proceedings Article

A brief introduction to boosting

TL;DR: The boosting algorithm AdaBoost is introduced, and the underlying theory of boosting is explained, including an explanation of why boosting often does not suffer from overfitting.
References
More filters
Book

Computers and Intractability: A Guide to the Theory of NP-Completeness

TL;DR: The second edition of a quarterly column as discussed by the authors provides a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., San Francisco, 1979.
Book

The Art of Computer Programming

TL;DR: The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid.
Book

Pattern classification and scene analysis

TL;DR: In this article, a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition is provided, including Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.