scispace - formally typeset
Journal ArticleDOI

Linear Active Stabilization of Converter-Dominated DC Microgrids

Amr Ahmed A. Radwan, +1 more
- 01 Mar 2012 - 
- Vol. 3, Iss: 1, pp 203-216
Reads0
Chats0
TLDR
Three simple and computationally efficient active damping solutions that can be implemented to stabilize a controlled voltage-source converter (VSC) interfacing a dc- microgrid to an ac system are proposed.
Abstract
DC microgrids are gaining high momentum under the smart grid environment. DC microgrid stability can be an issue under high penetration of tightly regulated power converters used to interface distributed resources and loads. This paper addresses dc microgrid stability under high penetration of tightly regulated power electronic converters; and proposes three simple and computationally efficient active damping solutions that can be implemented to stabilize a controlled voltage-source converter (VSC) interfacing a dc- microgrid to an ac system. The proposed active damping methods depend on reshaping the VSC impedance by injecting internal-model-based active damping signal at the outer, intermediate and inner control loops of the voltage-oriented VSC interface. Small signal analysis is conducted to assess the system stability under different compensation schemes. Moreover, the reshaped source impedance of the VSC interface and the modified voltage-tracking dynamics are derived under different compensation schemes. Sensitivity and robustness analyses are provided to assess the dynamic coupling among active damping and voltage tracking controllers. Evaluation results, based on a detailed model of a dc microgrid with multiple tightly regulated converter-interfaced loads, are provided to validate the developed models and demonstrate the effectiveness and robustness of proposed techniques.

read more

Citations
More filters
Journal ArticleDOI

Hierarchical Structure of Microgrids Control System

TL;DR: This paper reviews the status of hierarchical control strategies applied to microgrids and discusses the future trends.
Journal ArticleDOI

DC Microgrids—Part I: A Review of Control Strategies and Stabilization Techniques

TL;DR: In this paper, a review of control strategies, stability analysis, and stabilization techniques for dc microgrids is presented, where overall control is systematically classified into local and coordinated control levels according to respective functionalities in each level.
Journal ArticleDOI

DC Microgrids—Part II: A Review of Power Architectures, Applications, and Standardization Issues

TL;DR: In this article, an overview of the state of the art in dc microgrid protection and grounding is provided, which discusses both design of practical protective devices and their integration into overall protection systems.
Journal ArticleDOI

DC microgrids and distribution systems: An overview

TL;DR: In this paper, the authors present an overview of the most recent advances in DC distribution systems and evaluate where we currently stand on the migration path from the overwhelming fully AC power system to a more flexible hybrid AC/DC power system.
Journal ArticleDOI

Review on Control of DC Microgrids and Multiple Microgrid Clusters

TL;DR: In this paper, an extensive review on control schemes and architectures applied to dc microgrids (MGs) is presented, covering multilayer hierarchical control schemes, coordinated control strategies, plug-and-play operations, stability and active damping aspects, as well as nonlinear control algorithms.
References
More filters
Journal ArticleDOI

A new mathematical model and control of a three-phase AC-DC voltage source converter

Abstract: A new mathematical model of the power circuit of a three-phase voltage source converter (VSC) was developed in the stationary and synchronous reference frames. The mathematical model was then used to analyze and synthesize the voltage and current control loops for the VSC. Analytical expressions were derived for calculating the gains and time constants of the current and voltage regulators. The mathematical model was used to control a 140-kW regenerative VSC. The synchronous reference-frame model was used to define feedforward signals in the current regulators to eliminate the cross coupling between the d and q phases. It allowed the reduction of the current control loops to first-order plants and improved their tracking capability. The bandwidths of the current and voltage-control loops were found to be approximately 20 and 60 times (respectively) smaller than the sampling frequency. All control algorithms were implemented in a digital signal processor. All results of the analysis were experimentally verified.
Journal ArticleDOI

Dynamic Behavior and Stabilization of DC Microgrids With Instantaneous Constant-Power Loads

TL;DR: In this article, stability issues in dc microgrids with instantaneous constant-power loads (CPLs) are explored and mitigation strategies such as load shedding, adding resistive loads, filters, or energy storage directly connected to the main bus, and control methods are investigated.
Journal ArticleDOI

Active Damping in DC/DC Power Electronic Converters: A Novel Method to Overcome the Problems of Constant Power Loads

TL;DR: The implementation of novel active-damping techniques on dc/dc converters has been shown and the proposed active- damping method is used to overcome the negative impedance instability problem caused by the CPLs.
Journal ArticleDOI

Admittance space stability analysis of power electronic systems

TL;DR: A new stability criterion, which reduces artificial conservativeness and is also insensitive to component grouping is described and a means of readily establishing design specifications from an arbitrary stability criterion which specifically includes a provision to incorporate uncertainty, parameter variation, and nonlinearities is set forth.
Related Papers (5)