scispace - formally typeset
Open AccessProceedings Article

Link prediction based on graph neural networks

Muhan Zhang, +1 more
- Vol. 31, pp 5171-5181
Reads0
Chats0
TLDR
A novel $\gamma$-decaying heuristic theory is developed that unifies a wide range of heuristics in a single framework, and proves that all these heuristic can be well approximated from local subgraphs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

A Comprehensive Survey on Graph Neural Networks

TL;DR: This article provides a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields and proposes a new taxonomy to divide the state-of-the-art GNNs into four categories, namely, recurrent GNNS, convolutional GNN’s, graph autoencoders, and spatial–temporal Gnns.
Posted Content

Open Graph Benchmark: Datasets for Machine Learning on Graphs

TL;DR: The OGB datasets are large-scale, encompass multiple important graph ML tasks, and cover a diverse range of domains, ranging from social and information networks to biological networks, molecular graphs, source code ASTs, and knowledge graphs, indicating fruitful opportunities for future research.
Proceedings ArticleDOI

Cluster-GCN: An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks

TL;DR: Cluster-GCN is proposed, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure and allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy.
Posted Content

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

TL;DR: Wang et al. as discussed by the authors proposed a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling, which can precisely capture the hidden spatial dependency in the data.
Proceedings ArticleDOI

Graph WaveNet for Deep Spatial-Temporal Graph Modeling

TL;DR: This paper proposes a novel graph neural network architecture, Graph WaveNet, for spatial-temporal graph modeling by developing a novel adaptive dependency matrix and learn it through node embedding, which can precisely capture the hidden spatial dependency in the data.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Journal ArticleDOI

Emergence of Scaling in Random Networks

TL;DR: A model based on these two ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena that go beyond the particulars of the individual systems.
Proceedings Article

Distributed Representations of Words and Phrases and their Compositionality

TL;DR: This paper presents a simple method for finding phrases in text, and shows that learning good vector representations for millions of phrases is possible and describes a simple alternative to the hierarchical softmax called negative sampling.
Posted Content

Semi-Supervised Classification with Graph Convolutional Networks

TL;DR: A scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs which outperforms related methods by a significant margin.
Journal ArticleDOI

Matrix Factorization Techniques for Recommender Systems

TL;DR: As the Netflix Prize competition has demonstrated, matrix factorization models are superior to classic nearest neighbor techniques for producing product recommendations, allowing the incorporation of additional information such as implicit feedback, temporal effects, and confidence levels.
Related Papers (5)