scispace - formally typeset
Journal ArticleDOI

Lithium salt of tetrahydroxybenzoquinone: toward the development of a sustainable Li-ion battery.

TLDR
The use of lithiated redox organic molecules containing electrochemically active C=O functionalities, such as lithiated oxocarbon salts, is proposed to represent alternative electrode materials to those used in current Li-ion battery technology that can be synthesized from renewable starting materials.
Abstract
The use of lithiated redox organic molecules containing electrochemically active C═O functionalities, such as lithiated oxocarbon salts, is proposed. These represent alternative electrode materials to those used in current Li-ion battery technology that can be synthesized from renewable starting materials. The key material is the tetralithium salt of tetrahydroxybenzoquinone (Li4C6O6), which can be both reduced to Li2C6O6 and oxidized to Li6C6O6. In addition to being directly synthesized from tetrahydroxybenzoquinone by neutralization at room temperature, we demonstrate that this salt can readily be formed by the thermal disproportionation of Li2C6O6 (dilithium rhodizonate phase) under an inert atmosphere. The Li4C6O6 compound shows good electrochemical performance vs Li with a sustained reversibility of ∼200 mAh g−1 at an average potential of 1.8 V, allowing a Li-ion battery that cycles between Li2C6O6 and Li6C6O6 to be constructed.

read more

Citations
More filters
Journal ArticleDOI

Electrical Energy Storage for the Grid: A Battery of Choices

TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Journal ArticleDOI

Towards greener and more sustainable batteries for electrical energy storage

TL;DR: The notion of sustainability is introduced through discussion of the energy and environmental costs of state-of-the-art lithium-ion batteries, considering elemental abundance, toxicity, synthetic methods and scalability.
Journal ArticleDOI

Challenges and prospects of lithium-sulfur batteries.

TL;DR: The development of novel composite cathode materials including sulfur-carbon and sulfur-polymer composites are described, describing the design principles, structure and properties, and electrochemical performances of these new materials.
Journal ArticleDOI

Functional Materials for Rechargeable Batteries

TL;DR: Recent progress in functional materials applied in the currently prevailing rechargeable lithium-ion, nickel-metal hydride, lead acid, vanadium redox flow, and sodium-sulfur batteries is reviewed.
References
More filters
Journal ArticleDOI

Building better batteries

TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Book

Green Chemistry: Theory and Practice

TL;DR: Green Chemistry: What is green chemistry? as discussed by the authors presents the principles of green chemistry and evaluates the impact of chemistry on the environment. But, it is not a complete overview of all of the issues involved in green chemistry.
Journal ArticleDOI

Global-scale temperature patterns and climate forcing over the past six centuries

TL;DR: In this article, a spatially resolved global reconstructions of annual surface temperature patterns over the past six centuries are based on the multivariate calibration of widely distributed high-resolution proxy climate indicators.
Journal ArticleDOI

Electrochemically Active Polymers for Rechargeable Batteries.

TL;DR: The goal of the present article is to provide a survey of electroactive polymers in view of potential applications in rechargeable batteries, and reviews the preparative methods and the electrochemical performance of polymers as rechargeable battery electrodes.
Journal ArticleDOI

Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia

TL;DR: The results extend previous conclusions that recent Northern Hemisphere surface temperature increases are likely anomalous in a long-term context to at least the past 1,700 years, but with additional strong caveats.
Related Papers (5)