scispace - formally typeset
Open AccessJournal Article

Low-Power CMOS Digital Design

Reads0
Chats0
TLDR
An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations, and is achieved by trading increased silicon area for reduced power consumption.
Abstract
Motivated by emerging battery-operated applications that demand intensive computation in portable environments, techniques are investigated which reduce power consumption in CMOS digital circuits while maintaining computational throughput Techniques for low-power operation are shown which use the lowest possible supply voltage coupled with architectural, logic style, circuit, and technology optimizations An architecturally based scaling strategy is presented which indicates that the optimum voltage is much lower than that determined by other scaling considerations This optimum is achieved by trading increased silicon area for reduced power consumption >

read more

Citations
More filters

The Landscape of Parallel Computing Research: A View from Berkeley

TL;DR: The parallel landscape is frame with seven questions, and the following are recommended to explore the design space rapidly: • The overarching goal should be to make it easy to write programs that execute efficiently on highly parallel computing systems • The target should be 1000s of cores per chip, as these chips are built from processing elements that are the most efficient in MIPS (Million Instructions per Second) per watt, MIPS per area of silicon, and MIPS each development dollar.
Journal ArticleDOI

Energy-aware wireless microsensor networks

TL;DR: This article presents a suite of techniques that perform aggressive energy optimization while targeting all stages of sensor network design, from individual nodes to the entire network.
Proceedings ArticleDOI

A scheduling model for reduced CPU energy

TL;DR: This paper proposes a simple model of job scheduling aimed at capturing some key aspects of energy minimization, and gives an off-line algorithm that computes, for any set of jobs, a minimum-energy schedule.
Journal ArticleDOI

1-V power supply high-speed digital circuit technology with multithreshold-voltage CMOS

TL;DR: In this article, a multithreshold-voltage CMOS (MTCMOS) based low-power digital circuit with 0.1-V power supply high-speed low power digital circuit technology was proposed, which has brought about logic gate characteristics of a 1.7ns propagation delay time and 0.3/spl mu/W/MHz/gate power dissipation with a standard load.
Proceedings ArticleDOI

Scheduling for reduced CPU energy

TL;DR: A new metric for cpu energy performance, millions-of-instructions-per-joule (MIPJ), and several methods for varying the clock speed dynamically under control of the operating system, and examine the performance of these methods against workstation traces.
Related Papers (5)