scispace - formally typeset
Open AccessJournal ArticleDOI

Majorana fermions in a tunable semiconductor device

Jason Alicea
- 15 Mar 2010 - 
- Vol. 81, Iss: 12, pp 125318
TLDR
In this article, a topological superconducting phase supporting Majorana fermions can be realized using surprisingly conventional building blocks: a semiconductor quantum well coupled to an s-wave superconductor and a ferromagnetic insulator.
Abstract
The experimental realization of Majorana fermions presents an important problem due to their non-Abelian nature and potential exploitation for topological quantum computation. Very recently Sau et al. [Phys. Rev. Lett. 104, 040502 (2010)] demonstrated that a topological superconducting phase supporting Majorana fermions can be realized using surprisingly conventional building blocks: a semiconductor quantum well coupled to an s-wave superconductor and a ferromagnetic insulator. Here we propose an alternative setup, wherein a topological superconducting phase is driven by applying an in-plane magnetic field to a (110)-grown semiconductor coupled only to an s-wave superconductor. This device offers a number of advantages, notably a simpler architecture and the ability to tune across a quantum phase transition into the topological superconducting state while still largely avoiding unwanted orbital effects. Experimental feasibility of both setups is discussed in some detail.

read more

Citations
More filters
Journal ArticleDOI

Topological insulators and superconductors

TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Journal ArticleDOI

Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices

TL;DR: Electrical measurements on indium antimonide nanowires contacted with one normal (gold) and one superconducting (niobium titanium nitride) electrode support the hypothesis of Majorana fermions in Nanowires coupled to superconductors.
Journal ArticleDOI

New directions in the pursuit of Majorana fermions in solid state systems.

TL;DR: In this article, a review of recent advances in the condensed matter search for Majorana fermions is presented, which has led many in the field to believe that this quest may soon bear fruit.
Journal ArticleDOI

Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions

TL;DR: In this paper, the existence of Majorana fermions in the one-dimensional topological superconductor induced by placing an aluminium super-conductor close to an indium-arsenide nanowire was shown.
References
More filters
Journal ArticleDOI

Fault tolerant quantum computation by anyons

TL;DR: A two-dimensional quantum system with anyonic excitations can be considered as a quantum computer Unitary transformations can be performed by moving the excitations around each other Unitary transformation can be done by joining excitations in pairs and observing the result of fusion.
Journal ArticleDOI

Non-Abelian Anyons and Topological Quantum Computation

TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject are addressed, using the ''ensuremath{ u}=5∕2$ fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Journal ArticleDOI

Superconducting Proximity Effect and Majorana Fermions at the Surface of a Topological Insulator

TL;DR: It is shown that linear junctions between superconductors mediated by the topological insulator form a nonchiral one-dimensional wire for Majorana fermions, and that circuits formed from these junctions provide a method for creating, manipulating, and fusing Majorana bound states.

Non-Abelian Anyons and Topological Quantum Computation

TL;DR: In this article, the authors describe the mathematical underpinnings of topological quantum computation and the physics of the subject using the nu=5/2 fractional quantum Hall state as the archetype of a non-Abelian topological state enabling fault-tolerant quantum computation.
Journal ArticleDOI

Spin-Orbit Coupling Effects in Zinc Blende Structures

TL;DR: In this article, a character table for the group of the wave vector at certain points of symmetry in the Brillouin zone is given, and a possible reason for the complications which may make a simple effective mass concept invalid for some crystals of this type structure is presented.
Related Papers (5)