scispace - formally typeset
Open AccessJournal ArticleDOI

Markov models for fMRI correlation structure: is brain functional connectivity small world, or decomposable into networks?

Reads0
Chats0
TLDR
In this article, a decomposition of the Markov structure into segregated functional networks using decomposable graphs is proposed to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the smallworld properties of the underlying neural systems.
Abstract
Correlations in the signal observed via functional Magnetic Resonance Imaging (fMRI), are expected to reveal the interactions in the underlying neural populations through hemodynamic response. In particular, they highlight distributed set of mutually correlated regions that correspond to brain networks related to different cognitive functions. Yet graph-theoretical studies of neural connections give a different picture: that of a highly integrated system with small-world properties: local clustering but with short pathways across the complete structure. We examine the conditional independence properties of the fMRI signal, i.e. its Markov structure, to find realistic assumptions on the connectivity structure that are required to explain the observed functional connectivity. In particular we seek a decomposition of the Markov structure into segregated functional networks using decomposable graphs: a set of strongly-connected and partially overlapping cliques. We introduce a new method to efficiently extract such cliques on a large, strongly-connected graph. We compare methods learning different graph structures from functional connectivity by testing the goodness of fit of the model they learn on new data. We find that summarizing the structure as strongly-connected networks can give a good description only for very large and overlapping networks. These results highlight that Markov models are good tools to identify the structure of brain connectivity from fMRI signals, but for this purpose they must reflect the small-world properties of the underlying neural systems.

read more

Citations
More filters
Journal ArticleDOI

An evolutionary gap in primate default mode network organization

TL;DR: In this paper , a cross-species comparison of the human default mode network between humans and non-hominoid primates (macaques, marmosets, and mouse lemurs) was performed.
Proceedings ArticleDOI

Aggregation of Markov chains: an analysis of deterministic annealing based methods

TL;DR: This work develops notions of distance between subchains in Markov chains, and provides easily verifiable conditions that determine if a given Markov chain is nearly decomposable, that is, conditions for which the deterministic annealing approach can be used to identify subchains with high probability.
References
More filters
Journal ArticleDOI

Collective dynamics of small-world networks

TL;DR: Simple models of networks that can be tuned through this middle ground: regular networks ‘rewired’ to introduce increasing amounts of disorder are explored, finding that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs.
Journal ArticleDOI

Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain

TL;DR: An anatomical parcellation of the spatially normalized single-subject high-resolution T1 volume provided by the Montreal Neurological Institute was performed and it is believed that this tool is an improvement for the macroscopical labeling of activated area compared to labeling assessed using the Talairach atlas brain.
Journal ArticleDOI

A default mode of brain function.

TL;DR: A baseline state of the normal adult human brain in terms of the brain oxygen extraction fraction or OEF is identified, suggesting the existence of an organized, baseline default mode of brain function that is suspended during specific goal-directed behaviors.
Journal ArticleDOI

Complex brain networks: graph theoretical analysis of structural and functional systems

TL;DR: This article reviews studies investigating complex brain networks in diverse experimental modalities and provides an accessible introduction to the basic principles of graph theory and highlights the technical challenges and key questions to be addressed by future developments in this rapidly moving field.
Journal ArticleDOI

Functional connectivity in the motor cortex of resting human brain using echo-planar MRI.

TL;DR: It is concluded that correlation of low frequency fluctuations, which may arise from fluctuations in blood oxygenation or flow, is a manifestation of functional connectivity of the brain.
Related Papers (5)