scispace - formally typeset
Journal ArticleDOI

MRF Energy Minimization and Beyond via Dual Decomposition

TLDR
It is shown that by appropriately choosing what subproblems to use, one can design novel and very powerful MRF optimization algorithms, which are able to derive algorithms that generalize and extend state-of-the-art message-passing methods, and take full advantage of the special structure that may exist in particular MRFs.
Abstract
This paper introduces a new rigorous theoretical framework to address discrete MRF-based optimization in computer vision. Such a framework exploits the powerful technique of Dual Decomposition. It is based on a projected subgradient scheme that attempts to solve an MRF optimization problem by first decomposing it into a set of appropriately chosen subproblems, and then combining their solutions in a principled way. In order to determine the limits of this method, we analyze the conditions that these subproblems have to satisfy and demonstrate the extreme generality and flexibility of such an approach. We thus show that by appropriately choosing what subproblems to use, one can design novel and very powerful MRF optimization algorithms. For instance, in this manner we are able to derive algorithms that: 1) generalize and extend state-of-the-art message-passing methods, 2) optimize very tight LP-relaxations to MRF optimization, and 3) take full advantage of the special structure that may exist in particular MRFs, allowing the use of efficient inference techniques such as, e.g., graph-cut-based methods. Theoretical analysis on the bounds related with the different algorithms derived from our framework and experimental results/comparisons using synthetic and real data for a variety of tasks in computer vision demonstrate the extreme potentials of our approach.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Machine Learning : A Probabilistic Perspective

TL;DR: This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach, and is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Journal ArticleDOI

Deformable Medical Image Registration: A Survey

TL;DR: This paper attempts to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain, and provides an extensive account of registration techniques in a systematic manner.
Journal ArticleDOI

A Discriminatively Trained Fully Connected Conditional Random Field Model for Blood Vessel Segmentation in Fundus Images

TL;DR: Results suggest that this method for blood vessel segmentation in fundus images based on a discriminatively trained fully connected conditional random field model is suitable for the task of segmenting elongated structures, a feature that can be exploited to contribute with other medical and biological applications.
Posted Content

Learning with Submodular Functions: A Convex Optimization Perspective

TL;DR: Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular function and (2) the lovasz extension of sub-modular Functions provides a useful set of regularization functions for supervised and unsupervised learning as discussed by the authors.
Book

Learning with Submodular Functions: A Convex Optimization Perspective

TL;DR: In Learning with Submodular Functions: A Convex Optimization Perspective, the theory of submodular functions is presented in a self-contained way from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems.
References
More filters
Book

Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference

TL;DR: Probabilistic Reasoning in Intelligent Systems as mentioned in this paper is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty, and provides a coherent explication of probability as a language for reasoning with partial belief.
Book

Nonlinear Programming

Journal ArticleDOI

Fast approximate energy minimization via graph cuts

TL;DR: This work presents two algorithms based on graph cuts that efficiently find a local minimum with respect to two types of large moves, namely expansion moves and swap moves that allow important cases of discontinuity preserving energies.
Proceedings ArticleDOI

Fast approximate energy minimization via graph cuts

TL;DR: This paper proposes two algorithms that use graph cuts to compute a local minimum even when very large moves are allowed, and generates a labeling such that there is no expansion move that decreases the energy.
Journal ArticleDOI

Pictorial Structures for Object Recognition

TL;DR: A computationally efficient framework for part-based modeling and recognition of objects, motivated by the pictorial structure models introduced by Fischler and Elschlager, that allows for qualitative descriptions of visual appearance and is suitable for generic recognition problems.
Related Papers (5)